Hall定理】的更多相关文章

充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\)).G中有一组无公共点的边,一端恰好为组成X的点(也就是存在完美匹配)的充分必要条件是:X中的任意k个点至少与Y中的k个点相邻,即对于X中的一个点集W ,令N(W)为W的所有邻居, 霍尔定理即对于任意W,\(\lvert W\rvert \leq \lvert N(W)\rvert\) 证明 1.必…
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果不合法,假设我们存在一个极小的集合满足连到右侧的点数小于集合大小.因为是极小的,所以删去一个点之后就可以匹配,那么意为着某个点连出去的点和其他所有点有交,既然有交,那么一定这一段区间都可以加入进来形成一个不合法的集合.所以我们可以把存在一个点集不合法变成存在一段连续区间不合法. 假设每个点连向另外一…
目录 题目链接 题解 代码 题目链接 bzoj3693: 圆桌会议 题解 对与每个人构建二分,问题化为时候有一个匹配取了所有的人 Hall定理--对于任意的二分图G,G的两个部分为X={x1,x2,-,xn}和Y={y1,y2,-,ym}, 存在一个匹配M使得|M|=|X|的充要条件为对于X的任意一个子集A,与A相邻的点集记为T(A),一定有|T(A)|≥|A| 拆环为链 对于任意的区间[L,R],长度R-L+1,将所有区间[L,R]内的组插入操作求和为sum,如果sum > R - L + 1…
\(Description\) 给定一个\(n\)个点的二分图,每条边有边权.求一个边权最小的边集,使得删除该边集后不存在完备匹配. \(n\leq20\). \(Solution\) 设点集为\(S\),与\(S\)中的点相邻的点的并集为\(N(S)\). 由Hall定理,若存在点集\(S\)满足\(|S|>|N(S)|\),则该图不存在完备匹配. 因为\(n\)很小,直接枚举所有子集\(S\)并贪心删相邻点即可. 另外topcoder跑得快,直接写\(2^n\times n^2\)就好了..…
题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到Hall定理,显然) 为什么不是子集呢,因为区间并和子集等价,所有区间并都是要验证的. 而且可以发现,只有当R为某个r[i],L为某个l[j]时,[L,R]才有必要验证. 所以我们将区间按r[]排序,枚举每个r[i]作为R.限制条件为\(sum<=R-L+1\)即\(sum+L-1<=R\),对于前…
题目链接 只有指向父节点的单向道路,所以c个人肯定在LCA处汇合.那么就成了有c条到LCA的路径,求最大的x,满足能从c条路径中各选出x个数,且它们不同. 先要维护一条路径的数的种类数,可以树剖+每条链维护一个bitset解决.用vector一条链加一个bitset,SDOI R2现场测过我记得空间还不算特别大..当然本题数字只有1000种,一个点开一个bitset没问题.最后合并时还要通过线段树. 假设答案是x,那么c个人都要从可选特产中不重复地选x个,把每个人拆成x个点就是一个二分图完备匹配…
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i∈[1,m]都要满足 Xi-i >= 0,即min{Xi-i}>=0 (Hall定理) 用线段树维护即可 感觉不需要霍尔定理也能看出来(因为就是显然吧..) //583ms 4140KiB #include <cstdio> #include <cctype> #inclu…
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当且仅当它们的和不小于 h. 题解:先把b排序,要想能匹配,由hall定理,b的每个子集(大小为x)都至少有x条连向b,bi递增,和bi连的边也递增,那么当bi连边大于等于i时即可,所以当min(bi-i)>=0时满足条件 线性扫一遍即可,每个a二分b更新线段树即可 //#pragma GCC opt…
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会在编号在[Li,Ri]之间的石堆中挑出任意Ki颗扔向大海(好疼的玩法),如果[Li,Ri]剩下石子不够Ki颗,则取尽量地多.为了保留扔石子的新鲜感,Nan保证任意两个区间[Li,Ri]和[Lj,Rj],不会存在Li<=Lj&Rj<=Ri的情况,即任意两段区间不存在包含关系.可是,如果选择不…
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够. Input n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 ) Output 对于每个操作,输出一行,TAK表示够 NIE…