图像处理之FPN校正】的更多相关文章

1 FPN噪声介绍 FPN噪声(Fixed Pattern Noise)简称固定模式噪声,根据FPN噪声形成机制,分为行FPN和列FPN.行FPN: 在基于模拟域累加实现的TDI-CMOS图像传感器中.由于模拟累加器电路中存在寄 生电阻和电容,电路失配会导致输出图像在TDI(时间延迟积分)扫描方向(即“沿轨”方向) 亮度不均匀,且呈周期性衰减,突出表现为周期性横条纹.列FPN:传感器列并行读出电路(模拟累加器和ADC(模数转换器)等)的系统结构由于 工艺偏差很容易出现列与列之间的失配,从而导致输…
1 gamma校正背景 在电视和图形监视器中,显像管发生的电子束及其生成的图像亮度并不是随显像管的输入电压线性变化,电子流与输入电压相比是按照指数曲线变化的,输入电压的指数要大于电子束的指数.这说明暗区的信号要比实际情况更暗,而亮区要比实际情况更高.所以,要重现摄像机拍摄的画面,电视和监视器必须进行伽玛补偿.这种伽玛校正也可以由摄像机完成.我们对整个电视系统进行伽玛补偿的目的,是使摄像机根据入射光亮度与显像管的亮度对称而产生的输出信号,所以应对图像信号引入一个相反的非线性失真,即与电视系统的伽玛…
☞ ░ 前往老猿Python博文目录 ░ 本文转自博客园:淇淇宝贝的文章<图像处理之gamma校正>,原文链接:https://www.cnblogs.com/qiqibaby/p/5325193.html 一.gamma校正背景 在电视和图形监视器中,显像管发生的电子束及其生成的图像亮度并不是随显像管的输入电压线性变化,电子流与输入电压相比是按照指数曲线变化的,输入电压的指数要大于电子束的指数.这说明暗区的信号要比实际情况更暗,而亮区要比实际情况更高.所以,要重现摄像机拍摄的画面,电视和监视…
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象是什么.识别通常只处理已经检测到对象的区域,例如,人们总是会在已有的人脸图像的区域去识别人脸. 传统的目标检测方法与识别不同于深度学习方法,后者主要利用神经网络来实现分类和回归问题.在这里我们主要介绍如何利用OpecnCV来实现传统目标检测和识别,在计算机视觉中有很多目标检测和识别的技术,这里我们主…
EMVA1288标准之“非均匀性”的理解 目录 1. 什么是图像的非均匀性?有标准吗? 2. EMVA1288的非均匀性内容. 3. 总结与理解 正文 1. 什么是图像的非均匀性?有标准吗?简单来说,我们将相机对着一个均匀场景进行拍照时候,假定场景理想均匀,所有像素的灰度值也并非一致.这种个体之间的差异就是非均匀性.怎么测试相机焦平面的不一致,控制变量法,先保证被拍物体的均匀的,实验室中我们采用积分球光源,它可以假定为是一种理想的绝对均匀光.然后,我们需要对“均匀”进行定量的.系统的.数字化的评…
Atitit 图像处理的摩西五经attilax总结 1. 数字图像处理(第三版)1 2. 图像处理基础(第2版)(世界著名计算机教材精选)1 3. 计算机视觉特征提取与图像处理(第三版)2 4. OpenCV图像处理 2 4.1. 模式识别(英文版)(第4版) 西奥多里德斯著2 4.2. 图像处理,分析与机器视觉 第三版Sonka等著 艾海舟等译2 4.3. 计算机视觉:理论与算法 RichardSzeliski著2 1. 数字图像处理(第三版) 作者:(美)冈萨雷斯,(美)伍兹 著 Line…
Atitit 图像处理类库大总结attilax qc20 1.1. 选择与组合不同的图像处理类库1 1.2. Halcon 貌似商业工具,功能强大.1 1.3. Openvc  Openvc功能也是比较多的,api接口1 1.4.  Jhlabs  Java Image Filters ..2 1.5. Javafx 的javafx.scene.effect类库,处理blend,blur,glow,light还是有一些的东东..2 1.6. Matlab (功能有: 频域变换(傅里叶变换,dct…
一 RPC正射校正的原理 影像正射校正的方法有很多,主要包含两大类:一类是严格的几何纠正模型,另一类是近似几何纠正模型.当遥感影像的成像模型和有关参数已知时,可以根据严格的成像模型来校正图像,这种方法属于严格几何纠正,最具代表的是共线方程法.当传感器成像模型未知或者无法获取相关的辅助参数时,可以用假定的数学模型模拟成像模型,对影像实现校正,这种方法属于近似几何纠正,主要有:几何多项式纠正.有理函数法.局部区域校正等模型.本文将主要对RPC正射校正模型进行展开讨论. RPC模型将像点坐标d(lin…
Atitit 图像处理 灰度图片 灰度化的原理与实现 24位彩色图与8位灰度图 首先要先介绍一下24位彩色图像,在一个24位彩色图像中,每个像素由三个字节表示,通常表示为RGB.通常,许多24位彩色图像存储为32位图像,每个像素多余的字节存储为一个alpha值,表现有特殊影响的信息[1].     在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255[2].这样就得到一幅图片…
1.Color Filter Array — CFA 随着数码相机.手机的普及,CCD/CMOS 图像传感器近年来得到广泛的关注和应用. 图像传感器一般都采用一定的模式来采集图像数据,常用的有 BGR 模式和 CFA 模式.BGR 模式是一种可直接进行显示和压缩等处理的图像数据模式,它由 R( 红).G( 绿) .B( 蓝) 三原色值来共同确定 1 个像素点,例如富士数码相机采用的 SUPER CCD 图像传感器就采用这种模式,其优点是图像传感器产生的图像数据无需插值就可直接进行显示等后续处理,…