题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int a[N]; int b[N]; int Search(int num, int low, int high){ int mid; while(low <= high){ mid = (low + high)/; ; ; } return low; } in…
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000)  第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= Sii <= 10^9) Output 输出最长递增子序列的长度. Sample Input 8 5 1 6 8 2 4 5 10 Sample Output 5…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输出最长递增子序列的长度. Input示例 8 5 1 6 8 2 4 5 10 Output示例 5 #includ…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输出最长递增子序列的长度. Input示例 8 5 1 6 8 2 4 5 10 Output示例 5 #includ…
#include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 using namespace std; const int MIN = -1e9; int main(void){ ; scanf("%d", &n); ; i<n; i++){ scanf("%d", &a[i]); } ; i <= n; i…
动态规划 修改隐藏话题 1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 1…
原题链接:1134 最长递增子序列 题目分析:长度为  的数列  有多达  个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法.这里设输入数列的第一个数为  . 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的长度. 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的倒数第二个元素的位置(记录当前以得出的最长递增子序列中,各元素前面一个元素的位置) 有了这些变量,动态规划法求  的算法便可以…
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0 4},1 3 4,1 2 4均为A的LIS.给出数组A,求A的LIS有多少个.由于数量很大,输出Mod 1000000007的结果即可.相同的数字在不同的位置,算作不同的,例如 {1 1 2} 答案为2.   Input 第1行…
51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它开头的LIS长度 - 1 = n,那么这个元素可能在LIS中. 那么什么时候它一定在呢?就是它在LIS中的位置"无可替代"的时候,即:设以它结尾的LIS长度为x,以任何其它元素(不可能在LIS中的元素除外)结尾的LIS长度均不为x. 然后就做出来了! #include <cstdio…
1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0…
1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i<a_j$ $CDQ$分治可以解决偏序问题 $CDQ(l,r)\ :$ $CDQ(l,mid)$ $[l,r]$按$a$排序,$[l,mid] \rightarrow\ [mid+1,r]$ $CDQ(mid+1,r)$ 这个排序没法用归并排序,因为你要用最优的$f[k],k\in [mid+1,r]$来更新$…
Given an unsorted array of integers, find the length of longest increasing subsequence. For example,Given [10, 9, 2, 5, 3, 7, 101, 18],The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than o…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   输入 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) 输出 输出最长递增子序列的长度. 输入样例 8 5 1 6 8 2 4 5 10 输出样例 5解: #include<stdio.h…
题意: 最长递增子序列 思路: 普通的$O(n^2)$的会超时.. 然后在网上找到了另一种不是dp的写法,膜拜一下,自己写了一下解释 来自:https://blog.csdn.net/Adusts/article/details/80764782 代码: #include<stdio.h> #include<vector> #include<algorithm> using namespace std; int main() { int n = 0, buf = 0,…
传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:1 3 2 0 4,1 3 4,1 2 4均为A的LIS.其中元素1和4一定会出现在LIS当中,元素2和3可能会出现在LIS当中,元素0一定不会出现在LIS当中.给出数组A,输出哪些数可能出现在LIS中,哪些数一定出现在LIS中.输出数字对应的下标,下标编号从1开始,编号为1…
[算法]动态规划 [题解]经典模型:最长上升子序列(n log n) #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ; int a[maxn],b[maxn],f[maxn],n,m; int find(int x) { ,r=m+;//m+1是永远不可能被直接比较的,但是必须有 while(l<r) { ; ; else r=mid; } return l;…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 题解:先要确定这些点是不是属于最长递增序列然后再确定这些数在最长递增序列中出现的次数,如果大于1次显然是可能出现只出现1次肯定是必然出现.那么就是怎么判断是不是属于最长递增序列,这个只要顺着求一下最长递增标一下该点属于长度几然后再逆着求一下最长递减标一下该点属于长度几如果两个下标之和等于最长长度+1那么该点就属于最长递增序列,然后就是求1-len(le…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最长的有多少个,但是这样显然会超时所以要想一个方法去优化,要么用stl要么就是数据结构 线段树是个可以考虑的对象因为这也是求区间的和于是稍微将原数组优化一下,按照大小排序一下然后再按照下标更新这样能确保有序.具体看一下代码 还有一点要提一下有时候要考虑两维的东西可以适当排一下序使其变成一维有序这样就方…
题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && j < i },然后是数量,dp[i] = sigma(dp[j]) if dp[i] == dp[j] + 1. 如果普通转移时间复杂度很高,达不到要求,由于有个求和的操作,可以考虑用BIT优化,先把每个数离散化,然后对每个数只要求小于它的数,并且长度最长的就好了,数量也是,如果长度一样就进行合并…
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 自己怎么连这种 喜闻乐见的大水题 都做不出来了…… 好像见过的套路,就是求每个位置到它为止的LIS和从它开始的LIS,最后拼起来是ans+1的就在LIS上. 然后试图通过方案数来判断经过该位置的LIS有多少,以判断该位置是不是唯一的. WA了一次后发现自己的树状数组传参没有-1,求成非严格的了. 还是WA了后面的点.给方案数开了long long后多A了几个…
如何判断一个元素是否一定在LIS中?设f[i]为以ai结尾的LIS长度,g[i]为以ai开头的LIS长度,若f[i]+g[i]-1==总LIS,那么i就一定在LIS中出现 显然只出现一次的元素一定是必选,剩下的就是可选了. #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> using namespace std; ;…
20180604 23:18 https://blog.csdn.net/joylnwang/article/details/6766317(写得很用心,膜拜dalao) 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <…
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列.若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度.…
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec  内存限制: 256 MB提交: 39  解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是佛家用语,修罗毕生以战斗为目标,修罗场指的是他们之间的死斗坑,人们通常用‘修罗场’来形容惨烈的战场.后来又引申出‘一个人在困境中做绝死奋斗’的意思.所以,这其实也在暗示我们,即使是身处绝境,也不要放弃奋斗.再说了,情况其实没有这么糟糕,因为我们最新的导弹拦截系统已经研制好了.” 魔法世界为了防御修罗…
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前…
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子…
1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答     本期主要从动态规划和二分法两个方向来求解最长递增子序列问题. 3.1 动态规划求解最长递增子序列     先介绍时间复杂度为O(N^2^)的方法,具体过程如下: 生成数组dp,dp[i]表示在以arr[i]这个数结尾的情况下,arr[0-i]中的最大递增子序列长度. 对第一个数arr[0]来说,令d…
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序.例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列. 解法一:暴力递归 不解释,先暴力搞一下.(时间复杂度O(n^3),不行) 1 class Solution { 2 public: 3 int l(vector<int>&…