Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187. However, confirming that 632382518061 > 519432525806 would be much more difficult, as both numbers contain ove…
Largest exponential Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187. However, confirming that 632382518061 > 519432525806 would be much more difficult, as both…
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319…
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces of the room the shortest "straight line" distance from S to F is 10 and the path is shown on the di…
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is a ninth power. How many n-digit positive integers exist which are also an nth power? 这种数字满足下面条件: 对于数位为x的数S=k^x 有 10^(x-1)<=k^x<=10^x-1 #include &quo…
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 How many different ways can one hundred be written as a sum of at least two positive integers? #include <iostream> u…
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way: 28 = 22 + 23 + 24 33 = 32 + 23 + 24 49 = 52 + 23 + 24 47…
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? #include <iostream> #incl…
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae: Triangle P3,n=n(n+1)/2 1, 3, 6, 10, 15, ... Square P4,n=n2 1, 4, 9, 16, 25, ... Penta…
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be…