人理解循环,神理解递归!  一.递归的定义 def story(): s = """ 从前有个山,山里有座庙,庙里老和尚讲故事, 讲的什么呢? """ print(s) story() story() 老和尚讲故事 递归的定义——在一个函数里再调用这个函数本身.这种魔性的使用函数的方式就叫做递归. 递归的最大深度:997 1.python递归最大层数限制 997 2.最大层数限制是python默认的,可以做修改 3.但是我们不建议你修改 n =…
递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...). 拿什么来证明这个“998理论”呢?这里我们可以做一个实验: def foo(n): print(n) n +=…
什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): global i print('i = {}'.format(i)) i += 1 return func() func() #.....i = 994 i = 995 RecursionError: maximum recursion depth exceeded while calling a…
目录 一.初始递归 二.递归示例讲解 二分查找算法 一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...). 拿什么来证明这个"998理论"呢?这…
一.递归的定义 1.什么是递归:在一个函数里在调用这个函数本身 2.最大递归层数做了一个限制:997,但是也可以自己限制 1 def foo(): 2 print(n) 3 n+=1 4 foo(n) 5 foo(1) 验证997 3.最大层数限制是python默认的,可以做修改,但是不建议你修改.(因为如果用997层递归都没有解决的问题要么是不适合使用递归来解决问题,要么就是你的代码太烂了) 1 import sys 2 sys.setrecursionlimit(10000000)#修改递归…
递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998——是Python从内存角度出发做的限制 n = 0 def story(): global n n+= 1 print(n) story() #997/998 story() (3)修改最大深度:最好不要改——递归次数太多,则不适合用递归解决问题 import sys sys.setrecursionlimit(2000) #1997/1998 2. 递归的优点 会让代码变简单 3. 递归的缺点…
二分查找算法也成为折半算法,对数搜索算法,一会中在有序数组中查找特定一个元素的搜索算法.搜索过程是从数组中间元素开始的 如果中间元素正好是要查找的元素,则搜索过程结束:如果查找的数大于中间数,则在数组的前一半查找,否则,在后一半查找.直到找到相应 数据止. 该算法的的复杂度为 O(log n),相比其他算法优势还是比较明显的. 二分查找法的O(log n)让它成为十分高效的算法.不过它的缺陷却也是那么明显的.就在它的限定之上: 必须有序,我们很难保证我们的数组都是有序的.当然可以在构建数组的时候…
[本文出自天外归云的博客园] 记性不好(@.@),所以平时根本用不到的东西就算学过如果让我去想也会需要很多时间(*.*)! 二分查找算法 在一个有序数组中查找元素最快的算法,也就是折半查找法,先找一个数组中间位置(binary_index)的元素和目标元素(num)进行比较,如果binary_index位元素小于目标元素就在binary_index位右侧的子数组中继续递归查找,如果binary_index位元素大于目标元素就在binary_index位左侧的子数组中递归查找,如果binary_i…
两种方法实现Python二分查找算法   一. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 arr=[1,3,6,9,10,20,30] def findnumber(l,h,number):     mid=(l+h)//2     if arr[mid]==number:         print("找到了"+str(mid))     elif arr[mid]<number:         l = mid         return…
楔子 如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做? l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88] 你说,so easy! l.index(66)... 我们之所以用index方法可以找到,是因为python帮我们实现了查找方法.如果,index方法不给你用了...你还能找到这个66么? l = [2,3,5,10,15,16,18,22,26,30,32,35,41,…