Pytorch中的torch.cat()函数】的更多相关文章

cat是concatnate的意思:拼接,联系在一起. 先说cat( )的普通用法 如果我们有两个tensor是A和B,想把他们拼接在一起,需要如下操作: C = torch.cat( (A,B),0 ) #按维数0拼接(竖着拼) C = torch.cat( (A,B),1 ) #按维数1拼接(横着拼) >>> import torch >>> A=torch.ones(2,3) #2x3的张量(矩阵) >>> A tensor([[ 1., 1.,…
repeat(*sizes) → Tensor Repeats this tensor along the specified dimensions. Unlike expand(), this function copies the tensor’s data. WARNING torch.repeat() behaves differently from numpy.repeat, but is more similar to numpy.tile. For the operator sim…
Pytorch中randn和rand函数的用法 randn torch.randn(*sizes, out=None) → Tensor 返回一个包含了从标准正态分布中抽取的一组随机数的张量 size:张量的形状, out:结果张量.(目前还没有看到使用这个参数的例子) rand也差不多其实: torch.rand(*sizes, out=None) → Tensor 但是它是[0,1)之间的均匀分布 其他一些分布 离散正态分布 torch.normal(means, std, out=None…
MATLAB中“repmat”与“cat”函数的用法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. repmat函数 >> z=repmat(5,2,3) z = 5 5 5 5 5 5 >> y=repmat([6,5;7,9],3,4) y = 6 5 6 5 6 5 6 5 7 9 7 9 7 9 7 9 6 5 6 5 6 5 6 5 7 9 7 9 7 9 7 9 6 5 6 5 6 5 6 5 7 9 7 9 7…
squeeze用来减少维度, unsqueeze用来增加维度 具体可见下方博客. pytorch中squeeze和unsqueeze…
参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供了几种方法来根据迭代的数量来调整学习率 自己手动定义一个学习率衰减函数: def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by…
一.unsqueeze()函数 1. 首先初始化一个a 可以看出a的维度为(2,3) 2. 在第二维增加一个维度,使其维度变为(2,1,3) 可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒数第二个维度上增加一个维度,那么使用b.unsqueeze(-2) 二.squeeze()函数介绍 1. 首先得到一个维度为(1,2,3)的tensor(张量) 由图中可以看出c的维度为(1,2,3) 2.下面使用squeeze()函数将第一维去掉 可见,维度已经变为(2,3) 3.另外 可以看出维…
官方文档 torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定. 关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的理解. torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维.二维 × 二维.一维 × 二维.二维 × 一维.涉及到三维及三维以上维度的张量的乘法. 以下是五种情形的详细解释: 如果两个张量都是一维的,即 torch.Size([n]) ,此时返回两个向量的点积.作用与 to…
今天要聊聊用 PyTorch 进行 C++ 扩展. 在正式开始前,我们需要了解 PyTorch 如何自定义module.这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块.这种方式实现简单,但是,计算效率却未必最佳,另外,如果我们想实现的功能过于复杂,可能 PyTorch 中那些已有的函数也没法满足我们的要求.这时,用 C.C++.CUDA 来扩展 PyTorch 的模块就是最佳的选择了. 由于目前市面上…
来源于知乎:pytorch中model.eval()会对哪些函数有影响? - 蔺笑天的回答 - 知乎 https://www.zhihu.com/question/363144860/answer/951669576 内容 蔺笑天 37 人赞同了该回答 model的eval方法主要是针对某些在train和predict两个阶段会有不同参数的层.比如Dropout层和BN层 Dropout在train时随机选择神经元而predict要使用全部神经元并且要乘一个补偿系数 BN在train时每个bat…