主要思想 这篇文章主要是利用多个标准进行中文分词,和之前复旦的那篇文章比,它的方法更简洁,不需要复杂的结构,但比之前的方法更有效. 方法 堆叠的LSTM,最上层是CRF. 最底层是字符集的Bi-LSTM.输入:字符集embedding,输出:每个字符的上下文特征表示. 得到ht之后, CRF作为推理层. 打分: local score: 其中 ,,这一项是Bi-LSTM隐层ht和bigram 特征embedding的拼接. global score: A是转移矩阵tag yi to tag yj…
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:45:44 Paper:https://arxiv.org/pdf/1901.02985 Offical TensorFlow Code: https://github.com/tensorflow/models/blob/master/research/deeplab/core/nas_networ…
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫MobileNet,主要用于移动和嵌入式视觉应用.该模型具有小巧.低延迟的特点.MobileNet在广泛的应用场景中具有有效性,包括物体检测,细粒度分类,人脸属性和大规模地理定位. MobileNet架构 深度可分解卷积(Depthwise Separable Convolution) MobileNet模…
一.PipeLine 要点 TopDown + GlobalNet + RefineNet 二.Motivation 通过提高对难以识别的关键点的识别准确率,来提升总体识别准确率. 方法:1.refineNet中提升感受野 2. 在线难例挖掘 三.关键点 1. 软非最大值抑制(Soft NMS) Hard NMS是将IOU超过阈值之后的,分数比较差的框直接过滤掉,保留框相对较少.软非最大值抑制将分数较差的框的得分进一步抑制降低但保留(前提是IOU达到阈值以上),提升了一定的物体检测的召回率,从而…
两种形式的LSTM变体 Child-Sum Tree-LSTMs N-ary Tree-LSTMs https://paperswithcode.com/paper/improved-semantic-representations-from-tree…
对神经网络的木马攻击 Q: 1. 模型蒸馏可以做防御吗? 2. 强化学习可以帮助生成木马触发器吗? 3. 怎么挑选建立强连接的units? 本文提出了一种针对神经元网络的木马攻击.模型不直观,不易被人理解,攻击具有隐蔽性. 首先对神经元网络进行反向处理,生成一个通用的木马触发器,然后利用外部数据集对模型进行再训练,将恶意行为注入到模型中.恶意行为只会被带有木马触发器的输入激活. 不需要修改最初的训练过程,这通常需要几周到几个月的时间.应用我们的攻击需要几分钟到几个小时. 不需要用于训练模型的数据…
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation>-20180724,一篇来自德国波恩大学与锡根大学的paper. 论文code: https://github.com/briqr/CSPN Abstract The method introduces a novel layer which a…
论文链接:https://blog.csdn.net/qq_34889607/article/details/8053642 摘要 该文重新窥探空洞卷积的神秘,在语义分割领域,空洞卷积是调整卷积核感受野和DCNN feature map分辨率的有力工具.该文应用不同sample rate的空洞卷积以级联或者平行的方式来处理分割任务中的多尺寸问题.另外,增强了ASPP使其在图像级编码global context来生成卷积特征.该文与DeepLabv1,DeepLabv2不同,将作为后处理的CRF移…
前面介绍了两个文本检测的网络,分别为RRCNN和CTPN,接下来鄙人会介绍语义分割的一些经典网络,同样也是论文+代码实现的过程,这里记录一下自己学到的东西,首先从论文下手吧. 英文论文原文地址:https://arxiv.org/abs/1505.04597 前面的论文忘记介绍大佬的名字了,在这里先抱个歉...那么接下来有请提出U-Net的大佬们一一列席:Olaf Ronneberger, Philipp Fischer, and Thomas Brox 这里依次是三位大佬的主页   https…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…