Hoeffding霍夫丁不等式 在<>第八章"集成学习"部分, 考虑二分类问题\(y \in \{-1, +1\}\) 和真实函数\(f\), 假定基分类器的错误率为\(\epsilon\), 即对每个基分类器\(h_{i}\)有 \[ \begin{equation} P(h_{i}(x) \neq f(x)) = \epsilon \end{equation} \] 假设集成通过简单投票法结合\(T\)个基分类器, 若有超过半数的基分类器正确, 则集成分类就正确: \[…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
再谈word2vec 标签: word2vec自然语言处理NLP深度学习语言模型 2014-05-28 17:17 16937人阅读 评论(7) 收藏 举报  分类: Felven在职场(86)    目录(?)[+]   之前写过一篇博文介绍如何使用word2vec,最近老板让我讲一讲word2vec,显然光讲word2vec的使用是不够的,更重要的是介绍原理.这篇文章就写写自己对于word2vec的一些理解吧.   背景介绍 Word2vec是google在2013年开源的一款将词表征为实数…
前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱.所以我对SVM的整理会分为四篇(暂定为四篇)学习,不足之处,请多多指导. 四篇分别为: Python机器学习笔记:SVM(1)——SVM概述 Python机器学习笔记:SVM(2)——SVM核函数 Python机器学习笔记:SVM(3)——证明SVM Python机器学习笔记:SVM(4)—…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近. 哈夫曼编码(Huffman Coding) 又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种.Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码(有时也称为霍夫曼编…
在极坐标中,圆的表示方式为: x=x0+rcosθ y=y0+rsinθ 圆心为(x0,y0),r为半径,θ为旋转度数,值范围为0-359 如果给定圆心点和半径,则其它点是否在圆上,我们就能检测出来了.在图像中,我们将每个非0像素点作为圆心点,以一定的半径进行检测,如果有一个点在圆上,我们就对这个圆心累加一次.如果检测到一个圆,那么这个圆心点就累加到最大,成为峰值.因此,在检测结果中,一个峰值点,就对应一个圆心点. 霍夫圆检测的函数: skimage.transform.hough_circle…
在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如…
机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html…