Numpy array 合并】的更多相关文章

# 导包 import numpy as np numpy.array 的合并 .concatenate() 一维数组 x = np.array([1, 2, 3]) # array([1, 2, 3]) y = np.array([3, 2, 1]) # array([3, 2, 1]) np.concatenate([x, y]) # array([1, 2, 3, 3, 2, 1]) z = np.array([666, 666, 666]) # array([666, 666, 666]…
1.np.vstack() :垂直合并 >>> import numpy as np >>> A = np.array([1,1,1]) >>> B = np.array([2,2,2]) >>> print(np.vstack((A,B))) # vertical stack,属于一种上下合并,即对括号中的两个整体进行对应操作 [[1 1 1] [2 2 2]] >>> C = np.vstack((A,B)) &…
1 将list转换成array 如果list的嵌套数组是不规整的,如 a = [[1,2], [3,4,5]] 则a = numpy.array(a)之后 a的type是ndarray,但是a中得元素a[i]都还是list 如果a = [[1,2], [3,4]] 则a = numpy.array(a)之后 a的type是ndarray,里面的元素a[i]也是ndarray 2 flatten函数 Python自身不带有flatten函数,numpy中array有flatten函数. 同1的一样…
Numpy 是Python中数据科学中的核心组件,它给我们提供了多维度高性能数组对象. Arrays Numpy.array   dtype 变量 dtype变量,用来存放数据类型, 创建数组时可以同时指定 import numpy print ('生成指定元素类型的数组:设置dtype属性') x = numpy.array([1,2.6,3],dtype = numpy.int64) print (x) # 元素类型为int64 [1 2 3] print (x.dtype) # int64…
关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a…
目的 将gensim输出的格式转化为numpy array格式,支持作为scikit-learn,tensorflow的输入 实施 使用nltk库的停用词和网上收集的资料整合成一份新的停用词表,用来过滤文档中的停用词,也去除了数字和特殊的标点符号,最后将所有字母转化为小写形式. 以下是原文: Subject: Re: Candida(yeast) Bloom, Fact or Fiction From: pchurch@swell.actrix.gen.nz (Pat Churchill) Or…
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) a = np.arange(9).reshape((3,3)) a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) print(np.max(a)) #全局最大 8 print…
转自Stackoverflow.备忘用. Question In Python 2 I could do the following: import numpy as np f = lambda x: x**2 seq = map(f, xrange(5)) seq = np.array(seq) print seq # prints: [ 0 1 4 9 16] In Python 3 it does not work anymore: import numpy as np f = lambd…
python numpy array 与matrix 乘方 编程语言 waitig 1年前 (2017-04-18) 1272℃ 百度已收录 0评论 数组array 的乘方(**为乘方运算符)是每个元素的乘方,而矩阵matrix的乘方遵循矩阵相乘,因此必须是方阵. 2*3的数组与矩阵 >>> from numpy import * >>> import operator >>> a = array([[1,2,3],[4,5,6]]) >>…
import numpy as np np.random.seed(0) x = np.arange(10) x """ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ X = np.arange(15).reshape((3, 5)) X """ array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) &…
# 导包 import numpy as np numpy.array nparr = np.array([i for i in range(10)]) nparr # array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) zeros  .zeros(shape=(x,y), dtype=None, order='C'):返回来一个给定形状和类型的用 0 填充的数组: ones .ones(shape=(x,y), dtype=None, order='C'):返回来一个给…
Python 将numpy array由浮点型转换为整型 ——使用numpy中的astype()方法可以实现,如:…
bytes 与 string 之间互转 Python3 最重要的新特性大概要算是对文本和二进制数据作了更为清晰的区分.文本总是 Unicode,由str类型表示,二进制数据则由 bytes 类型表示.Python3 不会以任意隐式的方式混用 str 和 bytes,正是这使得两者的区分特别清晰.不能拼接字符串和字节包,也无法在字节包里搜索字符串(反之亦然),也不能将字符串传入参数为字节包的函数(反之亦然) b1=b'sdf' s1='sag' print(type(b1),type(s1))#<…
numpy.array插入一行或一列 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.array([[0,0,0]]) c = np.insert(a, 0, values=b, axis=0) d = np.insert(a, 0, values=b, axis=1) print(c) print(d) 结果: >>c [[0 0 0] [1 2 3] [4 5 6] [7 8 9]] >>d […
No.1. Numpy.array相较于Python原生List的性能优势 No.2. 将向量或矩阵中的每个元素 + 1 No.2. 将向量或矩阵中的所有元素 - 1 No.3. 将向量或矩阵中的所有元素 * 2 No.4. 将向量或矩阵中的所有元素 / 2 或 // 2 No.5. 幂运算 No.6. 取余 No.7. 取绝对值 No.8. 三角函数 No.9. 取e的x方 No.10. 取任意数的x方 No.11. 取以e为底x的对数 No.12. 取以任意数为底x的对数 No.13. 矩阵…
代码 需要先导入pandas arr的数据类型为一维的np.array import pandas as pd arr[~pd.isnull(arr)] 补充知识:python numpy.mean() axis参数使用方法[sum(axis=*)是求和,mean(axis=*)是求平均值] 如下所示: import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print(np.mean(X, axis=0, keepdims=True)…
numpy.array的基本运算以及对数据的操作 设置一个问题,例如 这种只需要基本的运算就可以实现 类似的 numpy对向量的运算进行了优化,速度是相当快的,这种被称为universal functions 可以使用+,-,,/,//, *(两个星号),%,1/(/表示浮点除,//表示整数除,%表示取余,**表示平方,1/表示倒数) 特殊的运算 像是abs(绝对值),三角函数(sin,cos,tan等),exp(所有元素取e的x次方),log,log2,log10 矩阵之间的运算,要保证可以运…
numpy.array基础 使用numpy.__version__可以检查numpy的版本 当然也可以直接使用命令行检查numpy版本 也可以用来简化引用,使用as python list特点 numpy是可以不限定类型的 array是限定类型的,降低了灵活性,但是效率更高,但是还有一个缺点,array只是将数据当做一个二维数组或者矩阵来看,无论哪种,array都没有配备相应的向量,用以对其进行相应的计算 numpy.array保存的是int32位整形(为啥我看别人是int64位) 因此即使输入…
问题描述 在将一个数组送入tensorflow训练时,报错如下: ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray) 数组元素为数组,每个数组元素的shape不一致,示例如下: cropImg[0].shape = (13, 13, 3) cropImg[1].shape = (14, 13, 3) cropImg[2].shape = (12, 13, 3…
概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, 2, 2]) print(np.vstack((a, b))) 合并后输出结果为: [[1 1 1] [2 2 2]] 按列左右合并 import numpy as np a = np.array([1, 1, 1]) b = np.array([2, 2, 2]) print(np.hstack(…
我们知道,用 .T 或者 .transpose() 都可以将一个矩阵进行转置. 但是一维数组转置的时候有个坑,光transpose没有用,需要指定shape参数, 在array中,当维数>=2,时这个成立,但=1时,就不成立了,如: In [7]: yOut[7]: array([0, 0, 0, 0, 0]) In [14]: y.TOut[14]: array([0, 0, 0, 0, 0]) In [15]: y.transpose()Out[15]: array([0, 0, 0, 0,…
No.1. 初始化状态 No.2. 合并多个向量为一个向量 No.3. 合并多个矩阵为一个矩阵 No.4. 借助vstack和hstack实现矩阵与向量的快速合并.或多个矩阵快速合并 No.5. 分割向量 No.6. 分割矩阵 No.7. 使用vsplit和hsplit对矩阵进行快速垂直分割及水平分割 No.8. 分割的应用:从矩阵中抽出最后一列,然后将其转化成向量…
有合并,就有分割. 本节主要讲述如何通过numpy对数组进行横向/纵向分割. 横向/纵向分割数组 首先创建一个6行4列的数组,然后我们对此数组按照横向进行切割,分成3块,这样每块应该有2行,见例子: import numpy as np a = np.arange(24).reshape(6, 4) print("a=") print(a) print(np.split(a, 3, axis=0)) 输出为: a= [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]…
import numpy as np A = np.array([1,1,1])[:,np.newaxis] B = np.array([2,2,2])[:,np.newaxis] #合并 C = np.vstack((A,B)) D = np.hstack((A,B)) #0,1纵横 E =np.concatenate((A,B,B,A),axis=0) print(E) print(C) print(D) print(A.shape,C.shape) print(A.shape,D.shap…
array中的某些数据坏掉,想要统一处理,找到了这个方法,做个笔记. 比如,把数组中所有小于0的数字置为0 import numpy as np t = np.array([-2, -1, 0, 1, 2]) t[t<0]=0 输出结果为 [0,0,0,1,2]…
对象的引用 看例子: a = np.array([0, 1, 2, 3]) b = a a[0] = 5 print("b=", b) # 判断a和b是否是同样的地址 print(b is a) 运行结果: b= [5 1 2 3] True 上面的例子中,我们改变了a的值,但打印出来b中的值也被修改了,原因是a和b指向相同的对象. 复制 如果我们想要解决修改了a的值不会影响到b中的值,该如何做到呢? import numpy as np a = np.array([0, 1, 2,…
import cv2 import numpy as np from PIL import Image from PIL import ImageEnhance def getline(frame): img = Image.fromarray(frame.astype('uint8')).convert('RGB') enh_col = ImageEnhance.Color(img) color = 1.5 image_colored = enh_col.enhance(color) enh_…
众所周知合并两个数组可以使用array_merge(),这是php提供的一个函数.另外还可以通过 array 的方式来合并数组,这两种直接有什么区别,哪一个的效率更高呢? array_merge() 格式: array array_merge ( array … ] ) 注意(区别): 如果合并的数组使用关联索引,数组中有相同的键名,则该键名后面的值将覆盖前一个值. 如果合并的数组使用数字索引,数组中有相同的键名, 后面的值将不会覆盖原来的值,而是附加到后面. 如果只给了一个数组并且该数组是数字…
使用numpy中的astype()方法可以实现,示例如下: x Out[20]: array([[ 5. , 4. ], [ 4. , 4.33333333], [ 3.66666667, 4.5 ]]) x.astype(int) Out[21]: array([[5, 4], [4, 4], [3, 4]]) 参考:http://stackoverflow.com/questions/10873824/how-to-convert-2d-float-numpy-array-to-2d-int…
1.纵向分割 >>> import numpy as np >>> A = np.arange(12).reshape((3, 4)) >>> print(A) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] >>> print(np.split(A, 2, axis=1))#纵向分割 [array([[0, 1], [4, 5], [8, 9]]), array([[ 2, 3], [ 6, 7], [10…