作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN,该网络结构清晰,效果显著,并且能简单移植到其它detector中,带来2-4%的性能提升 论文: Cascade R-CNN: Delving into High Quality Object Detection 论文地址: https://arxiv.org/abs/1712.00726 代码地…
安装参考https://github.com/zhaoweicai/Detectron-Cascade-RCNN/blob/master/INSTALL.md 1.对于在 python detectron/tests/test_spatial_narrow_as_op.py 时出现 AssertionError: Detectron ops lib not found; make sure that your Caffe2 version includes Detectron module de…
论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测.传统方法主要基于回归操作,Grid R-CNN则捕捉详细的空间信息,同时具有全卷积结构中对位置信息的敏感性.[ Instead of using only two independent points]是指CornerNet预测的不准确性.Grid R-CNN使用多点监督,用于编码更多的细节信息,同时降低了不准确的特…