题意:有N栋楼,每栋楼有\(val_i\)个人要避难,现在有M个避难所,每个避难所的容量为\(cap_i\),每个人从楼i到避难所j的话费是两者的曼哈顿距离.现在给出解决方案,问这个解决方案是否是花费最小的,若不是,则给出比这个更优的解. 分析:若只是要我们求一个最优解的话就用费用流做.现在要求判断是否最优,那么就是当前这张图中是否最短路还能被更新. 首先需要根据给定的解决方案重现这个状态下的残余网,其实只需要加入必要的弧即可:对与任意的楼与避难所(i,j),建边,费用为其距离;若i->j有流量…
题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员转移费用之和最小?若不是,输出SUBOPTIMAL,之后输出转移矩阵Ei,j.即第i座行政楼中Ei,j个人转移到第j座避难所;输出的不必是最优转移方案,只要比题解的sum小即可: 思路:直接建一个残量网络,即按照开始建的原图跑完最小费用流之后剩下的网络,行政楼和避难所之间的原图连边正向容量为inf,…
http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3256   Accepted: 855   Special Judge Description The City has a number of municipal buildings and a number of fallout shelters that were build…
Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 217564-bit integer IO format: %lld      Java class name: Main   The City has a number of municipal buildings and a number of fallout shelters th…
POJ \(Description\) \(n\)个建筑物,每个建筑物里有\(a_i\)个人:\(m\)个避难所,每个避难所可以容纳\(b_i\)个人. 给出每个建筑物及避难所的坐标,任意两点间的距离为它们的曼哈顿距离\(+1\). 现在给出一个分配方案(\(g[i][j]\)表示第\(i\)个建筑物去第\(j\)个避难所的人数),问是否存在所有人移动的距离之和比当前更小的方案.如果存在,输出任意一组更小的方案. \(n,m\leq100\) \(Solution\) 直接跑费用流会T,但是也没…
题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在负环上. 2.这个负环可能包括汇点t,所以构建残量网络的时候也要考虑防空洞到t上的容量. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring…
题意:给出n栋房子位置和每栋房子里面的人数,m个避难所位置和每个避难所可容纳人数.然后给出一个方案,判断该方案是否最优,如果不是求出一个更优的方案. 思路:很容易想到用最小费用流求出最优时间,在与原方案花费时间对比判断原方案是否最优.也许是组数太多了,这种方法会超时的. 放弃该思路. 看看题目没要求要最优解,而是得到一个更优的解. 在原图的所有反向边中能够找到一个总费用为负的回路(而且要有流量)的话,那就该解不是最优解,把该负环消去,更新流量,得到优化后的解.(原因: 反向边保存的是已经流过的流…
Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special Judge 题目链接:http://poj.org/problem?id=2175 Description: The City has a number of municipal buildings and a number of fallout shelters that were build sp…
---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的费用. 关键是坑在找环的起点.其实看了代码之后发现的确不难... #include<stdio.h> #include<queue> #include<string.h> #define MAXN 300 #define MAXM 30002*4 #define INF 1…
题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个残图是否满足最小费用最大流的判定依据类比于最大流中的层次图的构建,此时只需要判定图中是否存在负环即可.在写的过程中由于图中的编号和抽象了之后的编号有一个变换关系,所以处理要小心,一开始直接写了个最小费用最大流,通过费用来判定是否为最优TLE.找负环的时候,该题宜从汇点开始遍历,因为源点发出的边肯定全…