[引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决方案和思路. PCA给我的第一印象就是去相关,这和数据(图像.语音)压缩的想法是一致的.当然,PCA像是一种有损的压缩算法.但是不要紧,去除掉的信息也许是噪声呢,而且损失的信息不是"主要成分". PCA 降维的概念不是简单的去除原特征空间的某些维度,而是找出原特征空间的新的正交基,并且这个…
本文摘自:http://www.cnblogs.com/longzhongren/p/4300593.html 以表感谢. 综述: 主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理.经过降维去除了噪声. #主成分分析 是将多指标化为少数几个综合指标的一种统计分析方法. 是一种通过降维技术把多个变量化成少数几个主成分的方法,这些主成分能够反映原始变量的大部分信息,表示为原始变量的线性组合. 作用:1,解决自变量之间的多重共线性: 2,减少变量个数, 3,确保这些变量是相…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实验,PCA能够达到的识别率只有88%,而同样是无监督学习的KPCA算法,能够轻松的达到93%左右的识别率(虽然这二者的主要目的是降维,而不是分类,但也可以用于分类),这其中很大一部分原因是,KPCA能够挖掘到数据集中蕴含的非线性信息. 今天突然心血来潮,想重新推导一下KPCA的公式,期间遇到了几个小…
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实验,PCA能够达到的识别率只有88%,而同样是无监督学习的KPCA算法,能够轻松的达到93%左右的识别率(虽然这二者的主要目的是降维,而不是分类,但也可以用于分类),这其中很大一部分原因是,KPCA能够挖掘到数据集中蕴含的非线性信息. 1. 理论部分 KPCA的公式推导和PCA十分相似,只是存在两点…
PCA是机器学习中recognition中的传统方法,今天下午遇到了,梳理记一下 提出背景: 二维空间里,2个相近的样本,有更大概率具有相同的属性,但是在高维空间里,由于样本在高维空间里,呈现越来越稀疏的特性,即使相同属性的样本,距离也是随着维度提高,越来越远. 如100 * 100的照片分析,数据维度10000维,数据维度太高,计算机处理复杂度高,需要将维度降低(因为10000维里面数据之间存在相关关系,所以可以除去重复维度信息,而保持信息不丢失) 降维方法 1.以二维空间的5个样本X为例…
降维的两种方式: (1)特征选择(feature selection),通过变量选择来缩减维数. (2)特征提取(feature extraction),通过线性或非线性变换(投影)来生成缩减集(复合变量). 主成分分析(PCA):降维. 将多个变量通过线性变换(线性相加)以选出较少个数重要变量. 力求信息损失最少的原则. 主成分:就是线性系数,即投影方向. 通常情况下,变量之间是有一定的相关关系的,即信息有一定的重叠.将重复的变量删除. 基本思想:将坐标轴中心移到数据的中心,然后旋转坐标轴,使…
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease in vision and even results in complete blindness at later stages. The concept of a classification system of automatic cataract detecting based on retin…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征.这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征. 二.概念 协方差是衡量两个变量同时变化的变化程度.PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征.这k维…