一.概述 案例:使用opencv级联分类器CascadeClassifier+其提供的特征数据实现人脸检测,检测到人脸后使用红框画出来. API介绍:detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize =…
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年.人们只需要@一下Tay,Tay就会追踪该用户的网名.性别.喜欢的食物.邮编.感情状况等个人信息.除了聊天,Tay还可以说笑话,…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { String cascadeFilePath = "F:/CMake_bulid/install/etc/haarcascades/haarcascade_frontalface_alt.xml";//数据路径 Ca…
前言  最近在学习人脸的目标检测任务时,用了Haar人脸检测算法,这个算法实现起来太简洁了,读入个.xml,调用函数就能用.但是深入了解我发现这个算法原理很复杂,也很优秀.究其根源,于是我找了好些篇相关论文,主要读了2001年Paul Viola和Michael Jones在CVPR上发表的一篇可以说是震惊了计算机视觉的文章,<Rapid Objection Dection using a Boosted Cascade of Simple Features>.这个算法最大的特点就是快!在当时…
很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注明出处:http://www.cnblogs.com/adong7639/p/4194307.html 一 人脸检测之问题概述 人脸检测是CV领域的一个经典课题,很多学者对人脸检测做了深入的研究,但真正的分水岭却是在2001年viola等大神发表的那篇经典之作Rapid Object Detecti…
一.使用OpenCV训练好的级联分类器来识别图像中的人脸 当然还有很多其他的分类器,例如表情识别,鼻子等,具体可在这里下载: OpenCV分类器 import cv2 # 矩形颜色和描边 color = (0,0,255) # 红色框 strokeWeight = 1 # 线宽为 1 windowName = "Object Detection" img = cv2.imread("lena.jpg") # 加载检测文件 cascade = cv2.CascadeC…
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练.本文就对此进行展开. 步骤 1.查找工具文件: 2.准备样本数据: 3.训练分类器: 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行. 1.查找工具文件: opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下. .\opencv2410\build\x64\vc12\bin 可以在该目录下查找到相关的工具文件,有open…
OpenCV支持的目标检測的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification).注意,新版本号的C++接口除了Haar特征以外也能够使用LBP特征. 先介绍一下相关的结构,级联分类器的计算特征值的基础类FeatureEvaluator,功能包含读操作read.复制clone.获得特征类型getFeatureType,分配图片分配窗体的操作setImage.setWindow,计算有序特征calcOrd,计算绝对特征calc…
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用.如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的训练器.opencv里面比较常用的分类器有svm以及级联分类器,svm的训练以及分类很简单,这里不再赘述,这里谈谈级联分类器的训练.级联分类器可是好东西,opencv已经封装了多尺度检测方法(multiScaleDetector)以及绘制外接矩形的方法,这两个方法为目标检测提供了非常大的便利性.以下…
级联分类器的介绍:级联分类器训练 因为要训练负样本,windows电脑有些问题,所以就只能有mac进行训练. 在windows中训练,准备了负样本之后,进行三步. 1.opencv_createsamples 也可以用来查看和检查保存于vec正样本文件中的正样本 2.opencv_traincascade 和 opencv_haartraining 都可用来训练一个级联分类器 命令中的参数在 当 opencv_traincascade 程序训练结束以后,训练好的级联分类器将存储于文件cascad…