今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from scipy.optimize import nnls ...: x = np.array([[1,2,3,4,5],[1,1,1,1,1]]) ...: x = x.T ...: y = np.array([11,12,13,15,16]) ...: nnls(x,y) ...: Out[39]: (…
直接插入排序 过程: 1. 数据可分看成两个部分,前面的数据是有序的 2. 从后面的数据取出一个元素,插到前面有序数据的合适位置 从右端开始查找,到找到比此元素大的时候,则此元素向后移动,以空出多余的空间来插入此元素. 3. 查找至最后. 例: 3 2 4 5 8 1 2 3 4 5 8 1 1 2 3 4 5 8 def insert_sort(lists): count = len(lists) for i in range(1, count): tmp = lists[i] j = i -…
                           KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以这样初始化: 之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致.如果一致就都向后移动,如果不一致,如下图: A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤: 因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道…
顺序表python版的实现(部分功能未实现) #!/usr/bin/env python # -*- coding:utf-8 -*- class SeqList(object): def __init__(self, max=8): self.max = max #创建默认为8 self.num = 0 self.date = [None] * self.max #list()会默认创建八个元素大小的列表,num=0,并有链接关系 #用list实现list有些荒谬,全当练习 #self.las…
python之simplejson,Python版的简单. 快速. 可扩展 JSON 编码器/解码器 simplejson Python版的简单. 快速. 可扩展 JSON 编码器/解码器 编码基本的 Python 对象层次结构: import simplejson as json print json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}]) print json.dumps("\"foo\bar") print json…
虽然python也能做数据分析,不过参加数学建模,咱还是用专业的 1. Matlab-入门篇:Hello world! 程序员入门第一式: disp(‘hello world!’) 2. 基本运算 先了解基本的运算符,做一些简单的尝试: +   Plus; addition operator. -   Minus; subtraction operator. *   Scalar and matrix multiplication operator. ^   Scalar and matrix…
关键词:Python.调包.线性规划.指派问题.运输问题.pulp.混合整数线性规划(MILP) 注:此文章是线性规划的调包实现,具体步骤原理请搜索具体解法.   本文章的各个问题可能会采用多种调用方法,为什么?因为这些包各有特点,有些语法特别像matlab,只要稍稍改变即可达成代码交换:而有些包利用了python本身的特性,在灵活度与代码的可读性上更高.我认为这些包各有优劣,各位各持所需吧.   看了本文章能做到什么?你可以在本文章内学到线性规划的几个问题的求解方式,并学会如何用pulp包解决…
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学建模新手入门 『Python 数学建模 @ Youcans』 系列 是专门为学习数学建模.准备数模竞赛的小白准备的系列教程. [Python数学建模-01.新手必读] 主要讨论小白刚刚接触数学建模的几个困惑: 学习数学建模难不难?应该怎么学? 学习数学建模选择什么计算机语言最好?我要学 Matlab…
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要求 方法 2020A 炉温曲线 建立温度模型,计算炉温曲线,确定最大速度 根据传热学方程建立温度分布机理模型:建立单目标优化模型 微分方程 单目标优化 2019A 高压油管的压力控制 确定不同条件下的控制方案 根据力学方程建立压力变化机理方程:建立单目标优化模型 微分方程 单目标优化 2018A 高…
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 选址问题 选址问题是指在某个区域内选择设施的位置使所需的目标达到最优.选址问题也是一种互斥的计划问题. 例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用.运输费及 n 个地区的产品需求量,…