首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Storm+HBase实时实践
】的更多相关文章
Storm+HBase实时实践
1.HBase Increment计数器 hbase counter的原理: read+count+write,正好完成,就是讲key的value读出,若存在,则完成累加,再写入,若不存在,则按"0"处理,再加上你需要累加的值. 传统上,如果没有 counter,当我们要给一个 column 的值 +1 或者其他数值时,就需要先从该 column 读取值,然后在客户端修改值,最后写回给 Region Server,即一个 Read-Modify-Write (RMW) 操作.在这样的过…
STORM在线业务实践-集群空闲CPU飙高问题排查
源:http://daiwa.ninja/index.php/2015/07/18/storm-cpu-overload/ 2015-07-18AUTHORDAIWA STORM在线业务实践-集群空闲CPU飙高问题排查有2条评论 STORM在线业务实践-集群空闲CPU飙高问题排查 最近将公司的在线业务迁移到Storm集群上,上线后遇到低峰期CPU耗费严重的情况.在解决问题的过程中深入了解了storm的内部实现原理,并且解决了一个storm0.9-0.10版本一直存在的严重bug,目前代码已经合并…
Storm分布式实时流计算框架相关技术总结
Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解Storm的内部实现细节. 1. Zookeeper集群 Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型(如:/zoo/a,/zoo/b),节点内可存储少量数据(<1M,当节点存储大数据量时,实际应用中可能出现同步问题). Zookeep…
使用Storm实现实时大数据分析
摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机…
Flume+Kafka+Storm+Hbase+HDSF+Poi整合
Flume+Kafka+Storm+Hbase+HDSF+Poi整合 需求: 针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据. 举例:这个网站www.hongten.com(当然这是一个我虚拟的电商网站),用户在这个网站里面可以有很多行为,比如注册,登录,查看,点击,双击,购买东西,加入购物车,添加记录,修改记录,删除记录,评论,登出等一系列我们熟悉的操作.这些操作都被记录在日志信息里面.我们要对日志信息进行分析. 本文中,我们对购买东西和加入购物车两个行为进行分析.然后…
HBase最佳实践(好文推荐)
HBase最佳实践-写性能优化策略 HBase最佳实践-管好你的操作系统 HBase最佳实践之列族设计优化 [大数据]HBase最佳实践 – 集群规划…
kafka+storm+hbase
kafka+storm+hbase实现计算WordCount. (1)表名:wc (2)列族:result (3)RowKey:word (4)Field:count 1.解决: (1)第一步:首先准备kafka.storm和hbase相关jar包.依赖如下: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance&qu…
使用Storm实现实时大数据分析!
随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb's上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机构需要…
基于Redis、Storm的实时数据查询实践
通过算法小组给出的聚合文件,我们需要实现一种业务场景,通过用户的消费地点的商户ID与posId,查询出他所在的商圈,并通过商圈地点查询出与该区域的做活动的商户,并与之进行消息匹配,推送相应活动信息到用户手机. 那么整个流程分为两步,第一步,将整个聚合文件刷入缓存,文件数据格式如下: 29 1:1 102100156910958 10015691 X有限公司 0 1 29 1:1 102100156910958 10015691 X有限公司 0 1 字段含义分别是 地区编号.商圈编号.商户编号.P…
Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理.为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接…