CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ val(T)=(\prod_{i=1}^na_i^{d_i}d_i^m)(\sum_{i=1}^nd_i^m) \] 求所有生成树的价值和\(\bmod 998244353\) \(n\leq 30000,m\leq 30\) 题解 很容易想到prufer序列 先把式子化简: \[ \begin{…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist}(i, j)^k\] \(n ≤ 50000, k ≤ 150\) 题解 先划划那个 \(S(i)\) 的式子 我们需要知道一个化 \(x^n(n \ge 0)\) 的东西qwq \[\displaystyle x^n=\sum_{k=0}^{n}\begin{Bmatrix} n \\ k \e…
传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\)个人选\(r\)个的方案,第二类斯特拉数处理分组的情况即可. /* * Author: heyuhhh * Created Time: 2019/12/10 19:14:48 * dp预处理+第二类斯特林数 */ #include <iostream> #include <algorith…
题目大意 有一个无限长的二进制串,初始时它的每一位都为 \(0\).现在有 \(m\) 个操作,其中第 \(i\) 个操作是将这个二进制串的数值加上 \(2^{a_i}\).我们称每次操作的代价是这次操作改变的位的数量. 我们以一定概率执行这些操作:第 \(i\) 个操作有 \(p_i\) 的概率执行,否则不执行. 请求出所有执行的操作的代价和的期望. \(n\leq 100000,m\leq 200000,0\leq a_i\leq n\) 题解 容易发现,如果进行了 \(k\) 次操作且把这…
题面欺诈系列... 因为一个点最多只能连到前k个点,所以只有当前的连续k个点的连通情况是对接下来的求解有用的 那么就可以计算k个点的所有连通情况,dfs以下发现k=5的时候有52种. 我们把它们用类似于并查集的方式表达(比如12132代表点1和点3连通,2和5连通,3自己),然后再压缩一下. 但要注意的是,12132和23213这两种实际对应的是一种连通情况,我们只要把它都化成字典序最小的那种就可以了 然后考虑增加一个新点以后状态的转移,可以枚举这个点与前k个点(始状态S)的连边情况,其中有一些…
传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ \begin{aligned} ans_x=&\sum_{i=0}^{n}\sum_{j=0}^k{dis(x,i)\choose j}j!\begin{Bmatrix} k \\ j \end{Bmatrix}\\ =&\sum_{j=0}^kj!\begin{Bmatrix} k \\ j…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ335.html 前言 CLY大爷随手切这种题. 日常被CLY吊打系列. 题解 首先从 pruffer 编码的角度考虑这个问题. pruffer 编码的长度为 $n-2$ ,如果点 $i$ 在 pruffer 编码中出现了 $d_i - 1$ 次,那么点 $i$ 的度数就是 $d_i$ ,对答案的贡献次数就是 $\binom {n-2}{d_i}a_i ^ {d_i}$ . 于是自然想到用 EGF 做这个题.设 $$f_…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色的对数为\(x\). \(n\leq 10000,m\leq 200000\) 题解 我们考虑把这些小球分段,每段内所有小球颜色相同,但相邻两段的小球颜色可以相同. 设第\(i\)种颜色有\(b_i\)段,那么分\(j\)段的方案数是\(\frac{(\sum b_i)!}{\sum(b…