HDU-1018 BigNumber(斯特林近似)】的更多相关文章

题目链接 斯特林近似求数位长度经典题,更新板子顺手切了 #include <cstdio> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> #define DBG(x) cerr << #x << " = " << x << endl; const double PI = a…
LINK:HDU 1018 题意:求n!的位数~ 由于n!最后得到的数是十进制,故对于一个十进制数,求其位数可以对该数取其10的对数,最后再加1~ 易知:n!=n*(n-1)*(n-2)*......*3*2*1 ∴lg(n!)=lg(n)+lg(n-1)+lg(n-2)+......+lg(3)+lg(2)+lg(1); 代码: #include <iostream> #include <cstdio> #include <cmath> using namespace…
1130 N的阶乘的长度 V2(斯特林近似) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.   Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3…
题目链接 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. --------------------------------------------------------------------------------------------- 1…
最近一堆题目要补,一直咸鱼,补了一堆水题都没必要写题解.备忘一下这个公式. Stirling公式的意义在于:当n足够大时,n!计算起来十分困难,虽然有很多关于n!的等式,但并不能很好地对阶乘结果进行估计,尤其是n很大之后,误差将会非常大.但利用Stirling公式可以将阶乘转化成幂函数,使得阶乘的结果得以更好的估计.而且n越大,估计得越准确. 传送门:_(:з」∠)_ 再来一个详细一点的,传送门:( ・´ω`・ ) Big Number Time Limit: 2000/1000 MS (Jav…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018 解题报告:输入一个n,求n!有多少位. 首先任意一个数 x 的位数 = (int)log10(x) + 1; 所以n!的位数 = (int)log10(1*2*3*.......n) + 1; = (int)(log10(1) + log10(2) + log10(3) + ........ log10(n)) + 1; #include<cstdio> #include<cstrin…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: n个房间,房间里面放着钥匙,允许破门而入k个,拿到房间里面的钥匙后可以打开对应的门,但是1号门不能破门而入,求这样检查完所有房间,概率是多少? 分析: 钥匙随机放到房间,全排列有n!: n个房间,破k个门进入,就是第一类斯特林数S(n,k): 但是,第一个门不能破门而入,就是要减去S(n-1,k-1): 然后求和SUM = S(n,i)  {1<=i<=k} 概率就是 SUM / N…
Problem Description In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of…
先和第二类做一个对比 第一类Stirling数是有正负的,其绝对值是包含n个元素的集合分作k个环排列的方法数目.递推公式为, S(n,0) = 0, S(1,1) = 1. S(n+1,k) = S(n,k-1) + nS(n,k). 边界条件: S(0 , 0) = 1 S(p , 0) = 0 p>=1 S(p , p) =1 p>=0 一些性质: S(p ,1) = 1 p>=1 S(p, 2) = 2^(p-1)– 1 p>=2 第二类Stirling数是把包含n个元素的集…
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1130 题意: 中文题诶~ 思路: 直接斯特林公式就好了~ N!=sqrt(2*pi*N)*(N/e)^N:(pi=3.1415926=acos(-1.0),e=2.718)lgN!=(lg(2*pi)+lgN)/2+N*(lgN-lge); 本题求十进制长度, 将 lg 换成 log10 就好了啦~ 代码: #include <bits/stdc++.h>…