【HDOJ】4351 Digital root】的更多相关文章

digital root = n==0 ? 0 : n%9==0 ? 9:n%9;可以简单证明一下n = a0*n^0 + a1*n^1 + ... + ak * n^kn%9 = a0+a1+..+ak然后,数学归纳易知结论是正确的.因此9个状态就够了,表示%9的结果.这里需要特殊处理0, 表示状态为0. /* 4351 */ #include <iostream> #include <sstream> #include <string> #include <m…
[LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/sum-root-to-leaf-numbers/description/ 题目描述: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a numbe…
由于项目需要root安装软件,并且希望在合适的时候引导用户去开启root安装,故需要检测手机是否root. 最基本的判断如下,直接运行一个底层命令.(参考https://github.com/Trinea/android-common/blob/master/src/cn/trinea/android/common/util/ShellUtils.java) 也可参考csdn http://blog.csdn.net/fm9333/article/details/12752415 /** * c…
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到boundry,使得boundry * n_edge - sum_edge <= k/b, 或者建立s->t,然后不断extend s->t. /* 4729 */ #include <iostream> #include <sstream> #include <…
转眼间从实习到现在已经快两年了.两年的工作做遇到过很多很多的拦路虎,大部分也通过搜索引擎找到了解决的方案.奈何大脑不是硬盘,偶尔有的问题第二次遇到还是有点抓蒙...所以决定把这些东西记录在博客上.这样一来可以利于自己的复习查找.二来也可能给其他的朋友一些提示.才疏学浅如有错误请大家及时指出.在此先感谢个位博客大神了. 正文: 原来一直使用MSSQL,偶尔玩一下MySQL.发现root密码忘记了.下面介绍一种通过命令和配置文件的方式修改root用户密码的方式 一.修改配置文件.使其不用密码可登录数…
本文收集于本人的笔记本,由于找不到原文出处.在此省略,如哪位知道可以联系我加上. 方法一:在windows下:1.打开命令行(DOS)窗口,停止mysql服务: net stop mysql 2.在DOS下面进入mysql的安装路径下的 bin目录,如 D:\mysql\bin 3. 输入并执行命令: mysqld-nt --skip-grant-tables (此命令执行后该窗口就停住了) 4.另外打开一个命令行窗口,执行mysql >use mysql >update user set p…
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define rep(i,n) for(int i=0;i<n;++i) #define…
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[k+1][j-(k-i+1)]+w(i,k,j)} (这个地方一开始写错了……) 即,将一棵树从k处断开成(i,k)和(k+1,i+j-1)两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j) 其中,$ w(i,k,j)=x[k+1]-x[i]+y[k]-y[i+j-1] $ 那么根据四边形…
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明显可以减小极差 然后……直接四边形不等式上吧……这应该不用证明了吧? MLE了一次:这次的w函数不能再开数组去存了……会爆的,直接算就行了= =反正是知道下标直接就能乘出来. 数据比较弱,我没开long long保存中间结果居然也没爆……(只保证最后结果不会爆int,没说DP过程中不会……) //H…
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l,r)=\sum_{i=l}^{r}\sum_{j=i+1}^{r}a[i]*a[j]$ 那么就有 $w(l,r+1)=w(l,r)+a[j]*\sum\limits_{i=l}^{r}a[i]$ 所以:w[i][j]明显满足 关于区间包含的单调性 然后我们大胆猜想,小(bu)心(yong)证明,w[…