spark streaming checkpoint】的更多相关文章

Checkpoint机制 通过前期对Spark Streaming的理解,我们知道,Spark Streaming应用程序如果不手动停止,则将一直运行下去,在实际中应用程序一般是24小时*7天不间断运行的,因此Streaming必须对诸如系统错误.JVM出错等与程序逻辑无关的错误(failures )具体很强的弹性,具备一定的非应用程序出错的容错性.Spark Streaming的Checkpoint机制便是为此设计的,它将足够多的信息checkpoint到某些具备容错性的存储系统如HDFS上,…
转载自:https://mp.weixin.qq.com/s/EQgDUSf3TK0oVg1xmg-49Q Checkpoint是Spark Streaming中的核心机制,它为应用程序的7*24小时LongRunning提供保证.Spark Checkpoint是基于JVM Serializable机制来实现,它会定时将整个Checkpoint对象从内存中序列化到外部存储(如HDFS),在应用程序异常重启时,对它进行反序列化,从而恢复到重启之前的状态. 但是基于JVM Serializable…
前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收流程模块中与Kafka集成相关的功能. Spark Streaming 与 Kafka 集成接受数据的方式有两种: Receiver-based Approach Direct Approach (No Receivers) 我们会对这两种方案做详细的解析,同时对比两种方案优劣.选型后,我们针对Di…
1.目标 为了构建实时应用程序,Apache Kafka  - Spark Streaming Integration是最佳组合.因此,在本文中,我们将详细了解Kafka中Spark Streaming Integration的整个概念.此外,我们将看看Spark Streaming-Kafka示例.在此之后,我们将讨论基于接收器的方法和Kafka Spark Streaming Integration的直接方法.此外,我们将在Kafka Spark Streaming Integration中…
Checkpointing 一个流应用程序必须全天候运行,所有必须能够解决应用程序逻辑无关的故障(如系统错误,JVM崩溃等).为了使这成为可能,Spark Streaming需要checkpoint足够的信息到容错存储系统中, 以使系统从故障中恢复. Metadata checkpointing:保存流计算的定义信息到容错存储系统如HDFS中.这用来恢复应用程序中运行worker的节点的故障.元数据包括 Configuration :创建Spark Streaming应用程序的配置信息 DStr…
Spark Streaming揭秘 Day33 checkpoint的使用 今天谈下sparkstreaming中,另外一个至关重要的内容Checkpoint. 首先,我们会看下checkpoint的使用.另外,会看下在应用程序重新启动时,是如何处理checkpoint的. Checkpoint保存什么 checkpoint作为容错的设计,基本思路是把当前运行的状态,保存在容错的存储系统中(一般是hdfs).对于容错的处理,肯定是围绕作业紧密相关的,保存内容包括元数据和数据两部分. 从元数据角度…
PersistenceStreaming没有做特别的事情,DStream最终还是以其中的每个RDD作为job进行调度的,所以persistence就以RDD为单位按照原先Spark的方式去做就可以了,不同的是Streaming是无限,需要考虑Clear的问题在clearMetadata时,在删除过期的RDD的同时,也会做相应的unpersist比较特别的是,NetworkInputDStream,是一定会做persistence的,因为会事先将流数据转化为persist block,然后Netw…
一.缓存与持久化机制 与RDD类似,Spark Streaming也可以让开发人员手动控制,将数据流中的数据持久化到内存中.对DStream调用persist()方法,就可以让Spark Streaming自动 将该数据流中的所有产生的RDD,都持久化到内存中.如果要对一个DStream多次执行操作,那么,对DStream持久化是非常有用的.因为多次操作,可以共享 使用内存中的一份缓存数据. 对于基于窗口的操作,比如reduceByWindow.reduceByKeyAndWindow,以及基于…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…