版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数据集进行训练. 如果对keras不是很熟悉的话,可以去看一看官方文档.或者看一看我前面的博客:数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST,在数据挖掘入门系列教程(十一)这篇博客中使用了keras构建一个DNN网络,并对keras的做了一个入门使用介绍. CIFA…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexNet的一些问题,并在AlexNet基础上做了一些改进,使得网络达到了比AlexNet更好的效果.同时,作者用"消融方法"(ablation study)分析了图片各区域对网络分类的影响(通俗地说,"消融方法"就是去除图片中某些区域,分析网络的性能). 反卷积神经网络(D…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…
(1)tf.nn.max_pool()函数 解释: tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None) 需要设置的参数主要有四个: 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape 第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, hei…
在前面的两篇博客中,我们介绍了DNN(深度神经网络)并使用keras实现了一个简单的DNN.在这篇博客中将介绍CNN(卷积神经网络),然后在下一篇博客中将使用keras构建一个简单的CNN,对cifar10数据集进行分类预测. CNN简介 我们可以想一个例子,假如我们现在需要对人进行识别分类,根据我们人类的思维,我们肯定是比较他的…
07_利用pytorch的nn工具箱实现LeNet网络 目录 一.引言 二.定义网络 三.损失函数 四.优化器 五.数据加载和预处理 六.Hub模块简介 七.总结 pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html 一.引言 首先再次安利一篇文章,这篇文章详细介绍了如果使用一个深度神经网络去实现人脸识别,这里面对卷积.池化.全连接.激活函数都有一个较为详细的解释,看完这篇文章,再来看这篇文章,相信会有一种醍醐灌顶之效…
1. 导入各种模块 基本形式为: import 模块名 from 某个文件 import 某个模块 2. 导入数据(以两类分类问题为例,即numClass = 2) 训练集数据data 可以看到,data是一个四维的ndarray 训练集的标签 3. 将导入的数据转化我keras可以接受的数据格式 keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数 label = np_u…
使用Tensorflow在CIFAR-10二进制数据集上构建CNN 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 利用Tensorflow读取二进制CIFAR-10数据集 Tensorflow官方文档 tf.transpose函数解析 tf.slice函数解析 CIFAR10/CIFAR100数据集介绍 tf.train.shuffle_batch函数解析 Python urllib urlretrieve函数解析 Tensorflow实…