近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞.(Github项目地址:https://github.com/FederatedAI/FATE )从FATE的面世,到贡献者激励制度的推出,参与开源社区建设的数据安全行业从业者不断踊现,FATE在业内的关注度.价值认可度逐步提升,联邦学习生态正进一步深化及拓展. AI时代数据安全问题严峻,联邦学习是必经解决路径 人工智…
作者:京东科技 葛星宇 1.前言 本文除特殊说明外,所指的都是fate 1.9版本. fate资料存在着多处版本功能与发布的文档不匹配的情况,各个模块都有独立的文档,功能又有关联,坑比较多,首先要理清楚各概念.模块之间的关系. 2.网络互联架构 1. 概念解释: RollSite是一个grpc通信组件,是eggroll引擎中的一个模块,相当于我们的grpc通信网关. Exchange是RollSite中的一个功能,用于维护各方网关地址,并转发消息.参考<FATE exchange部署指南> 2…
联邦学习 FATE (Federated AI Technology Enabler) 是微众银行AI部门发起的开源项目,为联邦学习生态系统提供了可靠的安全计算框架.FATE项目使用多方安全计算 (MPC) 以及同态加密 (HE) 技术构建底层安全计算协议,以此支持不同种类的机器学习的安全计算,包括逻辑回归.基于树的算法.深度学习和迁移学习等. FATE官方网站:fate.fedai.org/ FATE文档:fate.readthedocs.io/ 安装docker curl -fsSL htt…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://github.com/WeBankFinTech/FATE谷歌联邦迁移学习TensorFlow Federated (TFF)框架代码:https://www.tensorflow.org/federated/论文Towards Federated Learning at Scale: System Desi…
腾讯 Angel PowerFL 联邦学习平台 联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融.医疗.城市安防等领域. 腾讯 Angel PowerFL 联邦学习平台构建在 Angel 机器学习平台上,利用 Angel-­PS 支持万亿级模型训练的能力,将很多在 Worker 上的计算提升到 PS(参数服务器) 端:Angel PowerFL 为联邦学习算法提供了计算.加密.存储.状态同步等基本操作接口,通过流程调度模块协调参与方任务执行状态,而通信模块完成了任务训…
内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程师 大家都知道,人工智能的发展离不开广泛的数据支撑.数据是基础,也是关键.但行业中小规模.碎片化,亦是大规模.高质量的数据都很难获取,涉及到工程.监管和隐私合规多方面的问题.这也就导致人工智能产业面临数据孤岛挑战,比如企业获得用户数据越来越难.企业内不同部门数据难合作.同行业企业数据难以共享.跨行业数据难以发…
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU).谷歌(TPU).NVidia(GPU).华为和寒武纪,发现所有的AI芯片都支持TensorFlow框架. 从收集到的信息来看: 1.目前TensorFlow在智能边缘计算中是主流,例如TensorFlow提供了移动端应用开发API,参考资料中包含了示例. 2.AI芯片对深度学习的加速效果,其中NVI…
1. 引言 本文所讨论的内容为笔者对外文文献的翻译,并加入了笔者自己的理解和总结,文中涉及到的原始外文论文和相关学习链接我会放在reference里,另外,推荐读者朋友购买 Stephen Boyd的<凸优化>Convex Optimization这本书,封面一半橘黄色一半白色的,有国内学者翻译成了中文版,淘宝可以买到.这本书非常美妙,能让你系统地学习机器学习算法背后蕴含的优化理论,体会数学之美. 本文主要围绕下面这篇paper展开内涵和外延的讨论: [1] Siddiqui M A, Fer…
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在: https://github.com/honlu/GoLabuladongAlgorithm https://gitee.com/dreamzll/GoLabuladongAlgorithm 方便就请分享,star!备注转载地址!欢迎一起学习和交流! 链接参考: https://labulado…