决策树 要使决策树完整而有效,它必须包含所有的可能性.事件序列也必须提供,并且是互斥的,这意味着如果一个事件发生,另一个就不能发生. 决策树是监督机器学习的一种形式,因为我们必须解释输入和输出应该是什么.有决策节点和叶子.叶子是决策,不管是否是最终决策,节点是决策分裂发生的地方. 虽然有很多算法可供我们使用,但我们将使用迭代二分法(ID3)算法. 在每个递归步骤中,根据一个标准(信息增益.增益比等)选择对我们正在处理的输入集进行最佳分类的属性. 这里必须指出的是,无论我们使用什么算法,都不能保证…
转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223666.html 文章发表的另一个地址:https://blog.csdn.net/wyz19940328/article/details/85700819 目前国内关于机器学习的内容多是Python或者Go或者C++的,.NET平台下的多是使用封装好的工具包,而几乎没有关于如何使用C#实现的内容.目前有翻译版本的NET平台下的机器学习的书籍,不过却是F#语言的,没有C#. 目录 1.机…
我们有一个必须在n个城市之间旅行的推销员.他不在乎什么顺序.他最先或最后访问的城市除外.他唯一关心的是他会去拜访每一个人,每个城市只有一次,最后一站是他得家. 每个城市都是一个节点,每个节点通过一条边与其他封闭节点相连(可以将其想象成公路.飞机.火车.汽车等) 每个连接都有一个或多个权值与之相关,我们称之为成本. 成本描述了沿着该连接旅行的困难程度,如机票成本.汽车所需的汽油量等. 他的首要任务是尽可能降低成本和旅行距离. 对于那些学过或熟悉图论的人,希望你们还记得无向加权图. 城市是顶点,路径…
1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签.一般来说,只选择样本数据集中前 $k$ 个最相似的数据,这就是KNN算法 $k$ 的出处, 通常 $k$ 是不大于20的整数.最后,选择 $k$ 个最相似数据中出现次数最多的分类,作为新数据的分类. 2.实验准备: Python s…
Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任务步骤: (1)首先用字符串RDD来表示你的消息 (2)运行MLlib中的一个特征提取(feature extraction)算法来把文本数据转换为数值特征(适合机器学习算法处理):该操作会返回一个向量RDD. (3)对向量RDD调用分类算法(比如逻辑回归):这步会返回一个模型对象,可以使用该对象对…
一.安装Python 1.下载安装python3.6 https://www.python.org/getit/ 2.配置环境变量(2个) 略...... 二.安装Python算法库 安装顺序:NumPy -> SciPy -> Matplotlib -> Scikit-Learn NumPy( Numberical Python )是一个开源的python科学计算库. 可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该…
流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数据的驱动,并且经常结合使用先进的机器学习技术.在本篇文章中,我们将看到通常使用的哪些类型客户数据,对数据进行一些初步分析,并生成流失预测模型 - 所有这些都是通过Spark及其机器学习框架来完成的. 使用数据科学更好地理解和预测客户行为是一个迭代过程,其中涉及: 1.发现和模型创建: 分析历史数据.…
强化学习概况 正如在前面所提到的,强化学习是指一种计算机以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使程序获得最大的奖赏,强化学习不同于连督学习,区别主要表现在强化信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统如何去产生正确的动作.唯一的目的是最大化效率和/或性能.算法对正确的决策给予奖励,对错误的决策给予惩罚,如下图所示: 持续的训练是为了不断提高效率.这里的重点是性能,这意味着我们需要,在看不见的数据和算…
贝叶斯定理-执行数据分析解决肇事逃逸之谜 ​ 在这一章中,我们将: 应用著名的贝叶斯定理来解决计算机科学中的一个非常著名的问题. 向您展示如何使用贝叶斯定理和朴素贝叶斯来绘制数据,从真值表中发现异常值等等 贝叶斯定理概况 当我们使用贝叶斯定理的时候,我们是在测量一件事发生的概论程度: ​ 上式表示在给定事件B的情况下事件A发生的概率. 概率通常被量化为0和1之间的一个数,包括这两者;0表示不可能,1表示绝对肯定.概率越大,确定性越大.掷骰子得到6的概率和掷硬币得到正面的概率这两个例子你们肯定很熟…
在本章中,我们将展示两个独立的例子,一个用于人脸检测,另一个用于动态检测,以及如何快速地将这些功能添加到应用程序中. 在这一章中,我们将讨论: 面部检测 动态检测 将检测添加到应用程序中 面部检测 人脸检测,是人脸识别的第一部分.如果你不能从屏幕上的所有东西中识别出一个或多个人脸,那么你将永远无法识别那是谁的脸. 首先让我们看一张我们的应用程序截图: 上图中,通过摄像头我们已经捕获到一张图像,接下来启用面部跟踪,看看会发生什么: 物体面部特征正在被追踪.我们在物体周围看到的是面部追踪器(白色线框…
机器学习的基本知识 ,…用n个观测值测量.但我们不再对Y的预测感兴趣,因为我们不再有Y了,我们唯一感兴趣的是在已有的特征上发现数据模式: ​ 在前面的图中,我们可以看到这样的数据本身更适合于非线性方法,在这种方法中,数据似乎是按重要性分组的.它是非线性的,因为我们无法得到一条直线来准确地分离和分类数据.无监督学习允许我们在几乎不知道结果会是什么或应该是什么的情况下解决问题.结构来自于数据本身,而不是应用于输出标签的监督规则.这种结构通常由数据的聚类关系导出. 例如,假设我们有许多个基因来自我们的…
我们都听说过深度学习,但是有多少人知道深度信念网络是什么?让我们从本章开始回答这个问题.深度信念网络是一种非常先进的机器学习形式,其意义正在迅速演变.作为一名机器学习开发人员,对这个概念有一定的了解是很重要的,这样当您遇到它或它遇到您时就会很熟悉它! 在机器学习中,深度信念网络在技术上是一个深度神经网络.我们应该指出,深度的含义,当涉及到深度学习或深度信念时,意味着网络是由多层(隐藏的单位)组成的.在深度信念网络中,这些连接在一层内的每个神经元之间,而不是在不同的层之间.一个深度信念网络可以被训…
本章我们将学习以下内容: l  什么是微基准测试 l  如何将它应用到代码中 l  什么是激活函数 l  如何绘制和基准测试激活函数 每个开发人员都需要有一个好的基准测试工具.质量基准无处不在;你们每天都能听到,这个减少了10%那个增加了25%还记得那句老话吗,当你听到一个数字被抛出时,98.4%的情况下这个数字是假的.顺便说一下,这个数字也是我编的.当你听到这样的话,让那个人证明一下,你会得到什么?我们不需要定性的结果;我们需要能够被证明和持续复制的量化结果.可重复的结果是非常重要的,不仅对一…
SVM是Support Vector Machine的缩写,中文叫支持向量机,通过它可以对样本数据进行分类.以股票为例,SVM能根据若干特征样本数据,把待预测的目标结果划分成“涨”和”跌”两种,从而实现预测股票涨跌的效果. 1 通过简单案例了解SVM的分类作用 在Sklearn库里,封装了SVM分类的相关方法,也就是说,我们无需了解其中复杂的算法,即可用它实现基于SVM的分类.通过如下SimpleSVMDemo.py案例,我们来看下通过SVM库实现分类的做法,以及相关方法的调用方式. 1 #!/…
在本章中,将会学到: l  如何使用Kelp.Net来执行自己的测试 l  如何编写测试 l  如何对函数进行基准测试 Kelp.Net是一个用c#编写的深度学习库.由于能够将函数链到函数堆栈中,它在一个非常灵活和直观的平台中提供了惊人的功能.它还充分利用OpenCL语言平台,在支持cpu和gpu的设备上实现无缝操作.深度学习是一个非常强大的工具,对Caffe和Chainer模型加载的本机支持使这个平台更加强大.您将看到,只需几行代码就可以创建一个100万个隐藏层的深度学习网络. Kelp.Ne…
很多朋友想学习机器学习,却苦于环境的搭建,这里给出windows上scikit-learn研究开发环境的搭建步骤. Step 1. Python的安装 python有2.x和3.x的版本之分,但是很多好的机器学习python库都不支持3.x,因此,推荐安装2.7版本的python.当前最新的python是2.7.12.链接如下: https://www.python.org/downloads/release/python-2712/ 里面可以看到有32位版和64位版的.如果你的机器是64位版的…
目录: 1.关联分析 2. Apriori 原理 3. 使用 Apriori 算法来发现频繁集 4.从频繁集中挖掘关联规则 5. 总结 1.关联分析  返回目录 关联分析是一种在大规模数据集中寻找有趣关系的任务.这种关系表现为两种形式: 1.频繁项集(frequency item sets):经常同时出现的一些元素的集合: 2.关联规则(association rules): 意味着两种元素之间存在很强的关系. 下面举例来说明上面的两个概念: 表1 一个来自Hole Foods天食品店的简单交易…
目录: 1. Boosting方法的简介 2. AdaBoost算法 3.基于单层决策树构建弱分类器 4.完整的AdaBoost的算法实现 5.总结 1. Boosting方法的简介 返回目录 Boosting方法的基本思想:对于一个复杂的任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好. 实际上就是“三个臭皮匠顶个诸葛亮的道理.”(参考:李航 <统计学习方法>) 对于分类问题而言, 给定一个训练集,求比较粗糙的分类规则(弱分类器)要比求精确的分类规则(强…
使用MLlib库中的机器学习算法对垃圾邮件进行分类 分类的垃圾邮件的如图中分成4个文件夹,两个文件夹是训练集合,两个文件夹是测试集合 build.sbt文件 name := "spark-first" version := "1.0" scalaVersion := "2.11.8" libraryDependencies ++= Seq( "org.apache.spark" % "spark-core_2.11&…
自组织映射和弹性神经网络 自组织映射(SOM),或者你们可能听说过的Kohonen映射,是自组织神经网络的基本类型之一.自组织的能力提供了对以前不可见的输入数据的适应性.它被理论化为最自然的学习方式之一,就像我们的大脑所使用的学习方式一样,在我们的大脑中,没有预先定义的模式被认为是存在的.这些模式是在学习过程中形成的,并且在以更低的维度(如二维或一维)表示多维数据方面具有不可思议的天赋.此外,该网络以这样一种方式存储信息,即在训练集中保持任何拓扑关系. 更正式地说,SOM是一种集群技术,它将帮助…
模糊逻辑-穿越障碍 模糊逻辑.另一个我们经常听到的术语.但它的真正含义是什么?它是否意味着不止一件事?我们马上就会知道答案. 我们将使用模糊逻辑来帮助引导一辆自动驾驶汽车绕过障碍,如果我们做得正确,我们将避开沿途的障碍.我们的自动导航车辆(AGV)将在障碍物周围导航,感知其路径上的障碍物.它将使用一个推理系统来帮助引导它前进.你或者用户将能够创造障碍或通过的方式,AGV必须避开或通过.你可以观察跟踪光束的工作,以及跟踪AGV的路径沿其路线.AGV所采取的每一步都将在用户界面上进行更新,这样您就可…
构建ML模型的步骤 现在我们已经看了解到了一些ML应用程序的例子,问题是,我们如何构建这样的ML应用程序和系统? 下图总结了我们使用ML开发应用程序的方法,我们将在下面更详细地讨论这个问题: 如上图所示,建立学习模型的步骤如下: 问题定义:任何项目的第一步不仅是理解我们想要解决的问题,也定义了我们如何使用ML来解决问题.这第一步无疑是构建有用的ML模型和应用程序中最重要的一步.在开始构建ML模型之前,我们至少应该回答以下四个问题: l  当前碰到了什么问题?这是我们描述和陈述我们试图解决的问题的…
*以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第七部分是讲的是如何使用Spark中提供机器学习函数的MLlib库,在集群中并行运行机器学习算法. MLlib是Spark中提供机器学习函数的,MLlib就是RDD上一系列可供调用的函数的集合.需要注意的是:MLlib 中只包含能够在集群上运行良好的并行算法,不支持不能并行执行的算法. 一.操作向量 二.特征提取 三.特征标准化 四.分类 五.回归 六.聚类 七.降维 一.操作向量 MLlib 中有个最常用的数据类型Vector类:…
## 导入所需的包 import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf tf.reset_default_graph() plt.rcParams['font.sans-serif'] = 'SimHei' ##设置字体为SimHei显示中文 plt.rcParams['axes.unicode_minus'] = False ##设置正常显示符号 ## 导入…
在这一章,我们将建立一个垃圾邮件过滤分类模型.我们将使用一个包含垃圾邮件和非垃圾邮件的原始电子邮件数据集,并使用它来训练我们的ML模型.我们将开始遵循上一章讨论的开发ML模型的步骤.这将帮助我们理解工作流程. 在本章中,我们将讨论以下主题: l  定义问题 l  准备数据 l  数据分析 l  构建数据的特征 l  逻辑回归与朴素贝叶斯的Email垃圾邮件过滤 l  验证分类模型 定义问题 让我们从定义本章要解决的问题开始.我们可能已经对垃圾邮件很熟悉了;垃圾邮件过滤是众电子邮件服务的基本功能.…
项目演示地址:http://vidanao.com/ml>注意1:前端兼容性不太好,360浏览器比较兼容; >注意2:此vidanao.com也是我的个人博文主页,但目前还没部署 源码地址:https://github.com/Liwengbin/mml 开发背景:大四上的一次实践,那时一些原因我了解到这个项目的需求,开始接触到了Vue以及SpringBoot,并花时间开始开发这个项目的需求.(身为菜鸟的我还是很吃力的!···这句纯属废话) 前言:系统代码比较凌乱,没有结果优化,特别前端SVG…
概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa…
DecisionTreeClassifier与红酒数据集 1 sklearn.tree.DecisionTreeClassifier class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,…
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻算法: 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 决策树:最优划分属性,结点的“纯度”越来越高. 即如何选择最优划分属性,一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高. 支持向量机(SVM)是支持(或支撑)平…
上一讲主要利用不同模型计算出来的g.採用aggregation来实现更好的g.假设还没有做出来g.我们能够採用bootstrap的方法来做出一系列的"diversity"的data出来.然后训练出一系列的g.比方PLA来说,尽管模型一样,就是直线对二维平面的切割,模型都为直线,那么我们利用bootstrap来做出不同的数据,然后计算出不同的g,然后融合后就能够得到非常好的效果.或者也能够通过调整PLA的初始值来训练,得到一堆g,最后融合(parameter diversity,rand…