在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在SparkSQL中,对数据重新分区主要有两个方法 repartition 和 coalesce ,下面将对两个方法比较 repartition repartition 有三个重载的函数: def repartition(numPartitions: Int): DataFrame  /** * Returns…
这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this.type = { // StorageLevel不能随意更改 if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) { throw new UnsupportedOperationException("C…
关于RDD, 详细可以参考Spark的论文, 下面看下源码 A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. * Internally, each RDD is characterized by five main…
前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如何创建这个Driver Program的过程. 作业提交方法以及参数 我们先看一下用Spark Submit提交的方法吧,下面是从官方上面摘抄的内容. # Run on a Spark standalone cluster ./bin/spark-submit \ --class org.apach…
1.什么是RDD? 上一章讲了Spark提交作业的过程,这一章我们要讲RDD.简单的讲,RDD就是Spark的input,知道input是啥吧,就是输入的数据. RDD的全名是Resilient Distributed Dataset,意思是容错的分布式数据集,每一个RDD都会有5个特征: 1.有一个分片列表.就是能被切分,和hadoop一样的,能够切分的数据才能并行计算. 2.有一个函数计算每一个分片,这里指的是下面会提到的compute函数. 3.对其他的RDD的依赖列表,依赖还具体分为宽依…
好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1.2马上就要出来了,不知道变动会不会很大,据说添加了很多的新功能呢,期待中... 首先声明一下这个版本的代码是1.1的,之前讲的都是1.0的. Spark支持两种模式,一种是在spark里面直接写sql,可以通过sql来查询对象,类似.net的LINQ一样,另外一种支持hive的HQL.不管是哪种方…
这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照<Spark Streaming编程指南>. Example代码分析 val ssc = )); // 获得一个DStream负责连接 监听端口:地址 val lines = ssc.socketTextStream(serverIP, serverPort); // 对每一行数据执行Split操作 val words = lines.flatMap(_.split(" ")); // 统计w…
本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一个月的时间,更新太快了,节奏跟不上啊,这里仍旧是讲1.0.0的代码,所以各位朋友也不要再问我讲的是哪个版本,目前为止发布的文章都是基于1.0.0的代码. 在第一章<spark-submit提交作业过程>的时候,我们讲过Spark on yarn的在cluster模式下它的main class是or…
Spark大会上,所有的演讲嘉宾都认为shuffle是最影响性能的地方,但是又无可奈何.之前去百度面试hadoop的时候,也被问到了这个问题,直接回答了不知道. 这篇文章主要是沿着下面几个问题来开展: 1.shuffle过程的划分? 2.shuffle的中间结果如何存储? 3.shuffle的数据如何拉取过来? Shuffle过程的划分 Spark的操作模型是基于RDD的,当调用RDD的reduceByKey.groupByKey等类似的操作的时候,就需要有shuffle了.再拿出reduceB…