textCNN原理】的更多相关文章

​ 最近一直在研究textCNN算法,准备写一个系列,每周更新一篇,大致包括以下内容: TextCNN基本原理和优劣势 TextCNN代码详解(附Github链接) TextCNN模型实践迭代经验总结 TextCNN模型部署Tf-Serving实践总结 今天主要讲TextCNN的基本原理和优劣势,包括网络结构.如何更新参数以及应用场景等. 一. TextCNN 是什么 我们之前提前CNN时,通常会认为是属于CV领域,用于计算机视觉方向的工作,但是在2014年,Yoon Kim针对CNN的输入层做…
一.TextCnn的结构 1. 嵌入层(embedding layer) textcnn使用预先训练好的词向量作embedding layer.对于数据集里的所有词,因为每个词都可以表征成一个向量,因此我们可以得到一个嵌入矩阵\(M\),\(M\)中的每一行都是一个词向量 这个\(M\)可以是静态(static)的,也就是固定不变.可以是非静态(non-static)的,也就是可以根据反向传播更新 2.卷积池化层(convolution and pooling) 输入一个句子,首先对这个句子进行…
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) 一.textCNN 整体框架 1. 模型架构 图一:textCNN 模型结构示意 2. 代码架构 图二: 代码架构说明 text_cnn.py 定义了textCNN 模型网络结构 model.py 定义了训练代码 data.py 定义了数据预处理操作 data_set 存放了测试数据集合. polarity.neg 是负面情感文本, polarity.pos 是正面情感文…
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) TextCNN代码详解(附测试数据集以及GitHub 地址)(二) 调优模型的基本方法 大家如果跑过模型的话,不论是demo还是实际项目,通常的情况都是先跑一次看看效果,然后针对某些效果不好的地方做一些调优,俗称「调参狗」,调优有很多方法,基本的方法是:根据模型在测试集合的badcase 来分析有没有共性的问题,譬如做一个文本分类,我们在训练集上效果很好,但是测试集上,某…
最近已经训练好了一版基于DeepLearning的文本分类模型,TextCNN原理.在实际的预测中,如果默认模型会优先选择GPU那么每一次实例调用,都会加载GPU信息,这会造成很大的性能降低. 那么,在使用的过程中我们无关乎使用GPU还是CPU,使用CPU反而是很快的,所以在有GPU的服务器部署模型,代码之前加入os.environ["CUDA_VISIBLE_DEVICES"]=-1,这样事情就好解决了.…
卷积定义: 所谓卷积,其实是一种数学运算.但是在我们的学习生涯中,往往它都是披上了一层外衣,使得我们经常知其然不知其所以然.比如在信号系统中,他是以一维卷积的形式出现描述系统脉冲响应.又比如在图像处理中,他是以二维卷积的形式出现,可以对图像进行模糊处理.乍一看,两个形式风马牛不相及,但其实他们的本质都是统一的.可见,我们看待事物不仅要看他们的表象,还要从表象中分辨出他们的本质.下面进入正题. 卷积网络,也叫卷积神经网络(CNN),是一种专门依赖处理具有类似网络结构的数据的神经网络.卷积是一种特殊…
1. 模型原理 1.1 论文 Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出TextCNN. 将卷积神经网络CNN应用到文本分类任务,利用多个不同size的kernel来提取句子中的关键信息(类似于多窗口大小的ngram),从而能够更好地捕捉局部相关性. 1.2 网络结构 TextCNN的详细过程原理图如下: TextCNN详细过程: Embedding:第一层是图中最左边的7…
https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分类,其中多标签与句子或文档相关联. 虽然这些模型很多都很简单,可能不会让你在这项文本分类任务中游刃有余,但是这些模型中的其中一些是非常经典的,因此它们可以说是非常适合作为基准模型的. 每个模型在模型类型下都有一个测试函数. 我们还探讨了用两个seq2seq模型(带有注意的seq2seq模型,以及tr…
1. 什么是textRNN textRNN指的是利用RNN循环神经网络解决文本分类问题,文本分类是自然语言处理的一个基本任务,试图推断出给定文本(句子.文档等)的标签或标签集合. 文本分类的应用非常广泛,如: 垃圾邮件分类:2分类问题,判断邮件是否为垃圾邮件 情感分析:2分类问题:判断文本情感是积极还是消极:多分类问题:判断文本情感属于{非常消极,消极,中立,积极,非常积极}中的哪一类. 新闻主题分类:判断一段新闻属于哪个类别,如财经.体育.娱乐等.根据类别标签的数量,可以是2分类也可以是多分类…
目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway Networks 简介 通常,进行文本分类的主要方法有三种: 基于规则特征匹配的方法(如根据喜欢,讨厌等特殊词来评判情感,但准确率低,通常作为一种辅助判断的方法) 基于传统机器学习的方法(特征工程 + 分类算法) 给予深度学习的方法(词向量 + 神经网络) 自BERT提出以来,各大NLP比赛基本上已经…