opencv 边缘检测原理】的更多相关文章

只是实现一下,暂不考虑效率 import cv2 as cv import numpy as np import math # 从源码层面实现边缘检测 img = cv.imread('../images/face.jpg', flags=1) # flags=1读取为彩色,flags=0读取为灰度 h, w = img.shape[:2] gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) dst = np.zeros((h, w, 1), np.uint8)…
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
1. findCountours 转载于http://blog.sina.com.cn/s/blog_7155fb1a0101a90h.html findContours函数,这个函数的原型为: <span style="font-family:Times New Roman;">void findContours( InputOutputArray image, OutputArrayOfArrayscontours, OutputArray hierarchy, int…
Atitit 边缘检测原理attilax总结 1. 边缘检测的概念1 1.1. 边缘检测的用途1 2. 边缘检测方法分类1 3. 边缘检测的基本方法2 3.1. Roberts边缘检测算子2 3.2. rewitt边缘检测算子2 3.3. sobel边缘检测算子(较为常用)2 4. Canny边缘检测(最常用)2 4.1. 参考资料4 1. 边缘检测的概念 边缘检测是图像处理与计算机视觉中极为重要的一种分析图像的方法,至少在我做图像分析与识别时,边缘是我最喜欢的图像特征.边缘检测的目的就是找到图…
---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就是像素值差别很大,比如X1=20和X2=200,这两个像素差值180,在图像的显示就非常明显,这样图像的边缘不就体现出来了?但是问题来了,一幅图像给你,如果一个像素一个像素对比, 1.周围像素差别不大的怎么办? 2.周围相差很大,但是很多的怎么办? 3.怎么样才能更好地区别图像的边缘呢? 比如5-2…
http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scal…
边缘检测的一般步骤: 最优边缘检测的三个评价标准: 低错误率:表示出尽可能多的实际边缘,同时尽可能地减少噪声产生的误报: 高定位性:标识出的边缘要与图像实际边缘尽可能接近: 最小响应:图像中的边缘只能标识一次,并且可能存在的图像噪声不应被标识为边缘. 示例程序: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; //Canny边缘检测的一般过程: //…
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这一特性去寻找图像的边缘. 注意有一个问题,二阶求导为0的位置也可能是无意义的位置 拉普拉斯算子推导过程 以x方向求解为例: 一阶差分:f'(x) = f(x) - f(x - 1) 二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x…
摘要 图像几何变换又称为图像空间变换, 它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置.几何变换不改变图像的像素值, 只是在图像平面上进行像素的重新安排. 几何变换大致分为仿射变换.投影变换.极坐标变换,完成几何变换需要两个独立的算法过程: 1.一个用来实现空间坐标变换的算法,用它描述每个像素如何从初始位置移动到终止位置 2.一个插值算法完成输出图像的每个像素的灰度值 放射变换 首先,先来分析一下放射变换的原理: 什么是放射变换? 仿射变换是从一个二维坐标系变换到另一个二维坐标系,属于线…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("test.jpg"); Mat dst, gray,grad_x, gray_y,abs_grad_x,abs_grad_y; //转成灰度图 cvtColor(src, gray…