版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper with Convolutions>提出,其最大的亮点是提出一种叫Inception的结构,以此为基础构建GoogLeNet,并在当年的ImageNet分类和检测任务中获得第一,ps:GoogLeNet的取名是为了向YannLeCun的LeNet系列致敬. 关于深度网络的一些思考 在本系列最开始的几篇文…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个训练样本.如下图所示. 其中前三列表示数据(特征),最后一列表示数据(特征)的标签.注意:标签需要从0开始编码! 2.实现全连接网络 这个过程我就不多说了,如何非常简单,就是普通的代码实现,本篇博客的重点在于使用自己的数据,有些需要注意的地方我在后面会做注释.直接上代码 #隐含层参数设置 in_un…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果. 那个网络只有两层,而且MINIST数据集的样本量并不算太大.如果神经网络的隐藏层非常多,每层神经元的数量巨大,样本数量也巨大时,可能出现三个问题: 一是梯度消失和梯度爆炸问题,导致反向传播算法难以进行下去: 二是在如此庞大的网络中进行训…
博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写数字识别这种),哪里不会补哪里,这样不仅能学习到TensorFlow和算法知识,还知道如何在具体项目中应用,学完后还能出来一个项目.是不是要为博主的想法双击666?图样! 现在明白了什么叫基础不牢地动山摇,明白了什么叫步子太大直接就放弃,明白了我是适合循序渐进的学习,暂时不适合对着项目直接干. 同时…
讲授Lenet.Alexnet.VGGNet.GoogLeNet等经典的卷积神经网络.Inception模块.小尺度卷积核.1x1卷积核.使用反卷积实现卷积层可视化等. 大纲: LeNet网络 AlexNet网络 VGG网络 GoogLeNnet网络 反卷积可视化 数学特性 根据卷积结果重构图像 本集总结 LeNet网络: 卷积神经网络是1989年Y.LeCun提出的,真正有意义的卷积神经网络是LeNet-5网络,它是Y.LeCun1998年提出来的,现在尊称Y.LeCun为卷积神经网络之父,后…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…