目录 1. 背景 2. 深度学习中常见的激活函数 2.1 Sigmoid函数 2.2 tanh函数 2.3 ReLU函数 2.4 Leaky ReLu函数 2.5 ELU(Exponential Linear Units)函数 3. 小结 Reference 文章来源于夏飞-聊一聊深度学习的activation function: 文章核心内容未作改变,部分排版会有少许变化: 1. 背景   深度学习的基本原理是基于人工神经网络,信号从一个神经元进入,经过非线性的activation funct…
本文转自:谷歌工程师:聊一聊深度学习的weight initialization TLDR (or the take-away) Weight Initialization matters!!! 深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种,暂且称之为He Initialization: 使用Batch Normalization Layer…
  全文转载于郭耀华-[深度学习]深入理解Batch Normalization批标准化:   文章链接Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift:发表于2015的ICML: 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.   Bat…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
之前研究的CRF算法,在中文分词,词性标注,语义分析中应用非常广泛.但是分词技术只是NLP的一个基础部分,在人机对话,机器翻译中,深度学习将大显身手.这篇文章,将展示深度学习的强大之处,区别于之前用符号来表示语义,深度学习用向量表达语义.这篇文章的最大价值在于,为初学者指明了研究方向.下面为转载的原文:   在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的.本文讨论了深度学习如何用向量来表示语义,如何更灵活地表示向量,如何用向量编码的语义去完成翻译,以及有待改进的地方…
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感…
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html --------------------------------------------------------------------------------------------------------------- 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址http://blog.csdn.net/longxinchen_ml/article/details/51567960  目录(?)[-] 自然语言处理简介 词向量 基于SVD的方法 1 词-文档矩阵 2 基于窗口的共现矩阵X 基于迭代的方法 1 语言模型1-gram2-gram等等 2 连续词袋模型CBOM 3 Skip-Gram 模型 4 负面抽样Negative Sampling   作者:寒小阳 && 龙心尘 时间:2…
原文地址: https://blog.csdn.net/weixin_40759186/article/details/87547795 --------------------------------------------------------------------------------------------------------------- 用pytorch做dropout和BN时需要注意的地方 pytorch做dropout: 就是train的时候使用dropout,训练的时…