Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking  本文目标在于 tracking performance 和 efficiency 之间达到一种平衡.将 tracking 过程分解为两个并行但是相互协作的部分: 一个用于快速的跟踪(fast tracking): 另一个用于准确的验证(accurate verification). 本文的 Motivation…
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is copied from: https://github.com/foolwood/benchmark_results  Thanks for the careful list of visual tracking provided by foolwood  Visual Trackers CVPR20…
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53  这篇文章的 Motivation 来自于 MDNet: 本文所提出的 framework 为:…
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪,算是单目标跟踪中比较早的应用强化学习算法的一个工作.  在基于深度学习的方法中,想学习一个较好的 robust spatial and temporal representation for continuous video data 是非常困难的.  尽管最近的 CNN based tracke…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang Kaihua团队在ECCV 2014上发表的STC tracker:Fast Visual Tracking via Dense Spatio-Temporal Context Learning.相信做跟踪的人对他们团队应该是比较熟悉的了,如Compressive Tracking就是他们的杰作之一…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
Deeper and Wider Siamese Networks for Real-Time Visual TrackingUpdated on 2019-04-01 16:10:37 Paper (arXiv V3):https://arxiv.org/pdf/1901.01660.pdf Code:https://github.com/researchmm/SiamDW  (Training and Testing for SiamFC, but Testing only for Siam…
Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Paper:https://arxiv.org/abs/1809.04320 Code:https://github.com/xiaobai1217/MBMD 一.文章动机: 本文是为了更好的处理长期跟踪问题,而提出一种结合 Regression 和 Classification Network 的跟踪方法…
基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人理解,存在非常多问题,欢迎交流! 这是CVPR2014年的文章. 名字翻译为基于自适应选择颜色属性的实时视觉跟踪.首先理解什么是Adaptive color attributes,文章中colorattributes把颜色分为11类,就是将RGB三种颜色细化为黑.蓝.棕.灰.绿.橙.粉.紫.红.白和…
Hierarchical Convolutional Features for Visual Tracking  ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer 之间提取出来的不同特征进行跟踪.因为各个层次提出来的 feature 具有不同的特征.并且将各个层级的特征用现有的 correlation filter 进行编码物体的外观,我们在每一个层上寻找最佳响应来定位物体. 引言:老套路的讨论了现有的跟踪问题存在的挑战以及现有方法取得的一些进展,并且引出了…
Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive visual tracking approach 通过 weighted entropy 进行多特征融合.并非像许多方法所做的简单的链接在一起的方法,本文采用加权的 entropy 来评价目标状态和背景状态之间的区分性,…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:https://arxiv.org/pdf/1812.11703.pdf Project:https://lb1100.github.io/SiamRPN++ 1. Background and Motivation: 与 CVPR 2019 的另一篇文章 Deeper and Wider Siames…
Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2019-03-20 16:45:23 Paper:https://arxiv.org/pdf/1812.06148.pdf Code:(尚无) 背景与动机: 本文提出一种级联的 RPN 网络结合到 Siamese RPN 网络中,然后取得了更好的跟踪效果.本文的动机如下:1). 正负样本的比例,不一致,导致 Siamese Network 的训练不够有…
ATOM: Accurate Tracking by Overlap Maximization  2019-03-12 23:48:42  Paper:https://arxiv.org/pdf/1811.07628 Code: https://github.com/visionml/pytracking 1. Background and Motivation:  这篇文章的主要动机是从改善重合度的角度,来提升跟踪的总体性能.因为现有的算法,大部分都在强调,怎么做才能跟的上,而很少有人专门研究…
Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmerced.edu/mhyang/papers/aaai2019_tracking.pdf 本文提出一种新的学习思路,即:属性信息 (e.g., illumination changes, occlusion and motion) ,来进行 CNN 特征的学习,以得到更加鲁棒的 tracker.具体来…
Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架,该框架会选择部分有关联的相关滤波器用于提高跟踪的鲁棒性和计算效率.根据跟踪目标的动态特性,本文利用深度自注网络选择部分滤波器. 本文的主要的贡献在于以下几点: 本文引入自注相关滤波网络,用于动态目标的自适应跟踪 利用自注网络,关注最好的候选模型 增加相关滤波器的多样性,以覆盖目标的更多的变化 本文网…
Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zpainter/article/details/93378052 文章目录 0.摘要 1.introduction 2.Related Work 2.…
Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue Authors: 王文杰,冯福利,何向南,张含望,蔡达成 SIGIR'21 新加坡国立大学,中国科学技术大学,南洋理工大学 论文链接:https://dl.acm.org/doi/pdf/10.1145/3404835.3462962 本文链接:https://www.cnblogs.com/zihaojun/p/15713705…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构例如以下图: 用户编写公布topoloy到Aurora调度器.每个topology都作为一个Aurora的job在执行.每个job包含几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master.其它的Cont…
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不…
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图片中的物体.理解物体间的关系,并用一句自然语言表达出来. 应用场景:比如说用户在拍了一张照片后,利用Image Caption技术可以为其匹配合适的文字,方便以后检索或省去用户手动配字:此外它还可以帮助视觉障碍者去理解图像内容.类似的任务还有Video Caption,输入是一段视频,输出是对视频的…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm for Deep Belief Nets.这篇论文一开始读起来是相当费劲的,学习了好几天才了解了相关的背景,慢慢的思路也开始清晰起来.DBN算法就是Wake-Sleep算法+RBM,但是论文对Wake-Sleep算法解释特别少.可能还要学习Wake-Sleep和RBM相关的的知识才能慢慢理解,今天…
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Towards_Diverse_and_ICCV_2017_paper.pdf Implementation(Torch): https://github.com/doubledaibo/gancapt…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…