一类(One-Class)分类器】的更多相关文章

作者: 寒小阳 &&龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49949535 http://blog.csdn.net/longxinchen_ml/article/details/50001979 声明:版权所有,转载请注明出处,谢谢. 1. 线性分类器 在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法--KNN.然后我们也看到了KNN在解决这个问题…
        前面跟大家扯了这么多废话,终于到具体的机器学习模型了.大部分机器学习的教程,总要从监督学习开始讲起,而监督学习的众多算法当中,又以分类算法最为基础,原因在于分类问题非常的单纯直接,几乎不需要引入一些其它概念,因此我们就先从分类器开始讲起.         还记得第一节介绍的Spark ML架构吗?从Param起始,Spark ML通过PipelineStage引入了三个基本概念,Transformer,Estimator,Model,其中T和E本质上都是PipelineState…
libsvm是著名的SVM开源组件,目前有JAVA.C/C++,.NET 等多个版本,本人使用的是2.9libsvm命名空间下主要使用类:svm_model 为模型类,通过训练或加载训练好的模型文件获得svm_parameter 为参数类,主要为支持向量机设定参数,具体参数如下:     svm_parameter.svm_type     svm类型:SVM设置类型(默认svm_parameter.C_SVC)           svm_parameter.C_SVC -- C-SVC n(…
Zero-shot Recognition via semantic embeddings and knowledege graphs   2018-03-31  15:38:39  [Abstract] 我们考虑 zero-shot recognition 的问题:学习一个类别的视觉分类器,并且不用 training data,仅仅依赖于 类别的单词映射(the word embedding of the category)及其与其他类别的关系(its relationship to othe…
RCNN- 将CNN引入目标检测的开山之作 from:https://zhuanlan.zhihu.com/p/23006190 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记). RCNN (论文:Rich feature hierarchies for accurate object detection and semantic seg…
可以参考如下文章 https://blog.csdn.net/sinat_37965706/article/details/69204397 第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的误差来求得模型参数.我们看到这里的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的. Y=WX (假设W>0),Y的大小是随着X各个维度的叠加和的大小线性…
第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的误差来求得模型参数.我们看到这里的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的. Y=WX (假设W>0),Y的大小是随着X各个维度的叠加和的大小线性增加的,如图(x为了方便取1维): 然后再来看看我们这里的logistic 回归模型,模型公式是:,这里假设W>0,Y与X各维度叠加和(这里…
  目标检测是深度学习的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤:1.分类,识别物体是什么 2.定位,找出物体在哪里 除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示: 这个问题并不是那么容易解决,由于物体的尺寸变化范围很大.摆放角度多变.姿态不定,而且物体有很多种类别,可以在图片中出现多种物体.出现在任意位置.因此,目标检测是一个比较复杂的问题.最直接的方法便是构建一个深度神经网络,将图像和标注位置作为样本输入,然后经过CNN网络…
SVM 的英文叫 Support Vector Machine,中文名为支持向量机.它是常见的一种分类方法,在机器学习中,SVM 是有监督的学习模型. 什么是有监督的学习模型呢?它指的是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类.同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高.所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析.SVM 作为有监督的学习模型,通常可以帮我们模式识别.分…
Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作.作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR. 这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著.包括本文在内的一系列目标检测算法:RCNN,Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码 思想 本文解决了目标检测中的两个关键问题. 问题…