本系列的第六篇,一起读论文~ 本人才疏学浅,不足之处欢迎大家指出和交流. 今天要分享的是另一个Deep模型NFM(串行结构).NFM也是用FM+DNN来对问题建模的,相比于之前提到的Wide&Deep(Google).DeepFM(华为+哈工大).PNN(上交)和之后会分享的的DCN(Google).DIN(阿里)等,NFM有什么优点呢,下面就走进模型我们一起来看看吧. 原文:Neural Factorization Machines for Sparse Predictive Analytic…
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问题,具体的话下面一起来看下吧. 原文:Deepfm: a factorization-machine based neural network for ctr prediction 地址:http://www.ijcai.org/proceedings/2017/0239.pdf 1.问题由来 1.1.背景…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考~ 目录 一.基于内容的推荐算法 + TFIDF 二.在推荐系统中的具体实现技巧 正文 一…
区块链.云计算.大数据.人工智能.FinTech带来的挑战与机遇,中国技术开放日上海站精彩回顾 | 作者 韩婷 发布于 2016年12月26日. 估计阅读时间: 不到一分钟 | 欲知区块链.VR.TensorFlow等潮流技术和框架,请锁定QCon北京站!讨论 分享到:微博微信FacebookTwitter有道云笔记邮件分享 稍后阅读 我的阅读清单   FinTech带来的挑战与机遇 万达网络科技集团首席数据师兼首席架构师蔡栋以“FinTech带来的挑战与机遇”分享了他对FinTech的一些看法…
今天我们剖析的也是推荐领域的经典论文,叫做Wide & Deep Learning for Recommender Systems.它发表于2016年,作者是Google App Store的推荐团队.这年刚好是深度学习兴起的时间.这篇文章讨论的就是如何利用深度学习模型来进行推荐系统的CTR预测,可以说是在推荐系统领域一次深度学习的成功尝试. 著名的推荐模型Wide & deep就是出自这篇论文,这个模型因为实现简单,效果不俗而在各大公司广泛应用.因此它同样也可以认为是推荐领域的必读文章之…
读本篇论文“Batch-normalized Maxout Network in Network”的原因在它的mnist错误率为0.24%,世界排名第4.并且代码是用matlab写的,本人还没装cafe……  理论知识 本文是台湾新竹国立交通大学的Jia-Ren Chang 写的,其实要说这篇文章有多在的创新,还真没有,实际上它就是把三篇比较新的论文的东西组合起来,分别是这三篇: 1.Network in network :ICLR 2014 2.Maxout Networks :ICML 20…
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivation 神经网络在计算机视觉方面的成功得益于卷积神经网络,然而,现有的许多成功的神经网络结构都要求输入为一个固定的尺寸(比如224x224,299x299),传入一张图像,需要对它做拉伸或者裁剪,再输入到网络中进行运算. 然而,裁剪可能会丢失信息,拉伸会使得图像变形,这些因素都提高了视觉任务的门槛,…
Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(不过大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处理会丢失信息.),保持了不变…
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好. 2.代码地址:https://github.com/liuzhuang13/DenseNet 3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very…