2.基于采样的路径规划:RRT】的更多相关文章

对于GIS业务来说,路径规划是非常基础的一个业务,一般公司如果处理,都会直接选择调用已经成熟的第三方的接口,比如高德.百度等.当然其实路径规划的算法非常多,像比较著名的Dijkstra.A*算法等.当然本篇文章不是介绍算法的,本文作者会根据pgrouting已经集成的Dijkstra算法来,结合postgresql数据库来处理最短路径. 一.数据处理       路径规划的核心是数据,数据是一般的路网数据,但是我们拿到路网数据之后,需要对数据进行处理,由于算法的思想是基于有向图的原理,因此首先需…
前言:最近在(被迫)使用ArcGIS Engine10.2(.NET平台)进行二次开发(桌面应用),因为想做一个最短路径查询的功能,而arcgis的网络分析又比较麻烦,于是想到了使用Postgis.但这样就需要将本地shp存到数据库,在程序中连接数据库. 百度了半天发现Arcgis Engine直接连接PostgreSQL数据库需要用到ArcSDE.ArcSDE还需要另外安装,而且我用的ArcGIS Engine10.2只支持PostgreSQL 9.x(我的数据库版本是11),这样似乎就很麻烦…
 Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion planning functionality is still functional for backward compatibility and available, but it is recommended not to use it anymore),这样更具灵活性. 运动规划就是在给定的位…
传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度机器人在复杂环境中的规划.基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的路径规划问题.该方法的特点是能够快速有效地搜索高维空间,通过状态空间的随机…
基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的路径规划问题.该方法的特点是能够快速有效地搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径,适合解决多自由度机器人在复杂环境下和动态环境中的路径规划.与PRM类似,该方法是概率完备且不最优的. RRT是一种多维空间中有效率的规划方法.它以一个初始点…
源码地址:https://github.com/nalin1096/path_planning 路径规划 使用ROS实现了基于RRT路径规划算法. 发行版 - indigo 算法在有一个障碍的环境找到优化的路径.算法可视化在RVIZ完成,代码是用C ++编写. 包有两个可执行文件: 1 ros_node 2 env_node RVIZ参数: 1 Frame_id ="path_planner" 2 marker_topic ="path_planner_rrt" 说…
# 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后closed表中的节点很多,如何找出最优的一条路径 # 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路 # 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点 # 参考<无人驾驶概论>.<基于A*算法的移动机器人路径规划&g…
最终效果图如下: 还是图.邻接表,可以模拟出几个对象=>节点.边.路径.三个类分别如下: Node 节点: using System; using System.Collections.Generic; namespace Road.Plan { public class Node { private string id; private IList<Edge> edgeList; public double Lat { get; set; } public double Lng { g…
今天为大家介绍一种通过python实现坐标对间距离数据的获取方法.接口采用百度开发的路径规划接口. 1.调用接口: 接口:(传入起点坐标串,结束坐标串:ak值需要注册百度开发者) 接口详细说明 http://api.map.baidu.com/direction/v2/driving?origin=40.01116,116.339303&destination=39.936404,116.452562&ak=您的AK //GET请求 2.AK值获取: 注册成为开发者后需要添加应用,添加服务…
路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大.基于随机采样技术的PRM法可以有效解决高维空间和复杂约束中的路径规划问题. PRM是一种基于图搜索的方法,它将连续空间转换成离散空间,再利用A*等搜索算法在路线图上寻找路径,以提高搜索效率.这种方法能用相对少的随机采样点来找到…