通过DataWorks归档日志服务数据至MaxCompute 官方指导文档:https://help.aliyun.com/document_detail/68322.html但是会遇到大家在分区上或者DataWorks调度参数配置问题,具体拿到真实的case模拟如下: 创建数据源: 步骤1.进入数据集成,点击作业数据源,进入Tab页面. 步骤2. 点击右上角 新增数据源,选择消息队列 loghub. 步骤3.编辑LogHub数据源中的必填项,包括数据源名称.LogHubEndpoint.Pro…
欢迎咨询,合作! weix:wonter 名词解释: CDC又称变更数据捕获(Change Data Capture),开启cdc的源表在插入INSERT.更新UPDATE和删除DELETE活动时会插入数据到日志表中.CDC通过捕获进程将变更数据捕获到变更表中,通过cdc提供的查询函数,我们可以捕获这部分数据. ETL数据仓库技术(Extract-Transform-Load),它是将数据从源系统加载到数据仓库的过程.用来描述将数据从来源端经过萃取(extract).转置(transform).…
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库…
目前,中国企业在大数据流通.交换.利用等方面仍处于起步阶段,但是企业应用数据集成市场却是庞大的.根据 Forrester 数据看来,2017 年全球数据应用集成市场纯软件规模是 320 亿美元,如果包括人工在内,将达到 3940 亿美元. 在数据应用集成领域中,既有 Oracle.SAP.微软.Informatica 等传统的 IT 大佬,更有众多的创新型企业,其中 DataPipeline 就是一家通过提供批流一体的数据融合.数据清洗.数据同步等服务,帮助企业连接内外部数据孤岛,实现数据交换与…
简介 什么是DataWorks: DataWorks(数据工场,原大数据开发套件)是阿里云重要的PaaS(Platform-as-a-Service)平台产品,为您提供数据集成.数据开发.数据地图.数据质量和数据服务等全方位的产品服务,一站式开发管理的界面,帮助企业专注于数据价值的挖掘和探索. DataWorks支持多种计算和存储引擎服务,包括离线计算MaxCompute.开源大数据引擎E-MapReduce.实时计算(基于Flink).机器学习PAI.图计算服务Graph Compute和交互…
Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPipeline提供了一个相对成熟稳定的基础框架,还提供了一些开箱即用的工具,大大地降低研发的投入和提升应用的质量. 下面,我们看一看Kafka Connect的具体优势. 首先,Kafka Connect提供的是以数据管道为中心的业务抽象.在Kafka Connect里有两个核心概念:Source和S…
1. log4j(具体见log4j文档) log4j是一个java系统中用于输出日志信息的工具.log4j可以将日志定义成多种级别:ERROR  /  WARN  /  INFO  /  DEBUG log4j通过获取到一个logger对象来输出日志: val logger = Logger.getLogger("logger名称"); logger.info("日志内容") 所拿到的这些logger对象之间是有"父子"关系的,所有logger都…
资料库的创建.体系结构的创建.模型反向工程都已经完成了,下面就是创建以及执行接口来完成工作了. 浏览前两节请点击: [ODI]| 数据ETL:从零开始使用Oracle ODI完成数据集成(一) [ODI]| 数据ETL:从零开始使用Oracle ODI完成数据集成(二) 8. 创建项目及接口 项目包含了开发人员所开发的所有对象,项目包含的元素有接口.过程.包.变量.用户定义函数等.项目创建完毕后,即可在项目下创建接口来实现数据集成. [设计器]>>[项目]>>[新建项目] 为项目自…
引言:2018年7月25日,DataPipeline CTO陈肃在第一期公开课上作了题为<从ETL到ELT,AI时代数据集成的问题与解决方案>的分享,本文根据陈肃分享内容整理而成. 大家好!很高兴今天有机会和大家分享一些数据集成方面的看法和应用经验.先自我介绍一下.我叫陈肃,博士毕业于中国科学院大学,数据挖掘研究方向.现在北京数见科技(DataPipeline)任 CTO.之前在中国移动研究院任职算法工程师和用户行为实验室技术经理,之后作为合伙人加入过一家互联网教育公司,从事智能学习方面的研发…
上一个十年,以 Hadoop 为代表的大数据技术发展如火如荼,各种数据平台.数据湖.数据中台等产品和解决方案层出不穷,这些方案最常用的场景包括统一汇聚企业数据,并对这些离线数据进行分析洞察,来达到辅助决策或者辅助营销的目的,像传统的 BI 报表.数据大屏.标签画像等等. 但企业中除了这样的分析型业务(OLAP),还同时存在对数据实时性要求更高的交互型业务场景(OLTP 或 Operational Applications),例如电商行业常见的统一商品或订单查询.金融行业的实时风控.服务行业的客户…