前面我们介绍了基于卷积神经网络的图像风格迁移,利用一张content image 和 style image,可以让最终的图像既保留content image的基本结构,又能显示一定的style image的风格,今天我们介绍另外一篇类似的文章: Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis,这篇文章与之前的 Image Style Transfer Using Convo…
基于Pre-Train的CNN模型的图像分类实验  MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “imagenet-caffe-ref”的模型,提取图像特征(softmax前一层的输出,4096维),在几个常用的图像分类的数据库中进行了相应的分类实验.这实验的过程中,有对图片进行左右翻转用于增加训练数据.下面结果的表格中:Original原始结果,Flip增加翻转后的结果. 需要用到的toolbox…
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1-3.jpg 表示 分值为3 的第3 张图. 你可以把符合这个格式的图片放在 resize_images 来训练模型. 模型 人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : https://github.com/aymericdamien/TensorFlow-Examples/b…
基于区域的CNN(R-CNN) Region-based CNNs (R-CNNs) 基于区域的卷积神经网络或具有CNN特征的区域(R-CNN)是一种将深度模型应用于目标检测的开创性方法.在本节中,将讨论R-CNN及其一系列改进:Fast R-CNN[Girshick,2015].Faster R-CNN和Mask R-CNN.由于篇幅的限制,将把讨论局限于这些模型的设计上. 1. R-CNNs R-CNN模型首先从一幅图像中选择几个建议的区域(例如,锚框是一种选择方法),然后标记类别和边界框(…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 7: CNN 目录 一.CNN的引入 二.CNN的层次结构 三.CNN的小Demo加深对CNN的理解 四.CNN的特点 在学习本节课知识之前,先让我们来了解一下有关CNN的知识,让我们对CNN有一个大概的认知…
简介 Picsearch是一种基于卷积神经网络特征的图像搜索引擎. Github:https://github.com/willard-yuan/CNN-for-Image-Retrieval Web Demo:http://yongyuan.name/pic/ 数据集 Caltech256图像数据集:包含29780张图像与256个类. 源码结构 The code is written by Python, and the web server is cherrypy. ├── 256feat2…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns %matplotlib inline np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confus…
本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务. 推荐系统在日常的网络应用中无处不在,比如网上购物.网上买书.新闻app.社交网络.音乐网站.电影网站等等等等,有人的地方就有推荐.根据个人的喜好,相同喜好人群的习惯等信息进行个性化的内容推荐.比如打开新闻类的app,因为有了个性化的内容,每个人看到的新闻首页都是不一样的. 这当然是很有用的,在信息爆炸的今天,获取信息的途径和方式多种多样,人们花费时间最多的不再是去哪获取信息,而是要在众多的信息中寻找自己感兴趣的,这就…
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool()等,用法如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None) #来进行(二维数据)卷积操作 tf.nn.max_pool_with_argmax(input, ksize, stride…