Spark之SparkSql】的更多相关文章

SparkSQL和Hive On Spark都是在Spark上实现SQL的解决方案.Spark早先有Shark项目用来实现SQL层,不过后来推翻重做了,就变成了SparkSQL.这是Spark官方Databricks的项目,Spark项目本身主推的SQL实现.Hive On Spark比SparkSQL稍晚.Hive原本是没有很好支持MapReduce之外的引擎的,而Hive On Tez项目让Hive得以支持和Spark近似的Planning结构(非MapReduce的DAG).所以在此基础上…
基于Spark和SparkSQL的NetFlow流量的初步分析--scala语言 标签: NetFlow Spark SparkSQL 本文主要是介绍如何使用Spark做一些简单的NetFlow数据的处理,是基于 IntelliJ IDEA开发Spark 的Maven项目,本文会介绍一些简单的NetFlow基础知识,以及如何在 IntelliJ IDEA 上开发Maven项目,用Scala 写的一些简单的NetFlow字段分析统计的代码,包括 SparkCore和SparkSQL两个版本的. 初…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时间超过了1个小时,即使是在优化了HiveQL的情况下也有超过30分钟,所以近期把计算引擎从Hive变更为Spark. 普通的简单Job就使用SparkSQL来计算,数据流是经过spark计算,把结果插入到Mysql中 在项目中新建三个类,第一个Logger类用于日志的输出 # coding=utf-…
http://blog.csdn.net/wtq1993/article/details/52435563 http://blog.csdn.net/yeruby/article/details/51448188 hive on spark VS SparkSQL VS hive on tez 前一篇已经弄好了SparkSQL,SparkSQL也有thriftserver服务,这里说说为啥还选择搞hive-on-spark: SparkSQL-Thriftserver所有结果全部内存,快是快,但…
SparkSQL是指整合了Hive的spark-sql cli, 本质上就是通过Hive访问HBase表,具体就是通过hive-hbase-handler, 具体配置参见:Hive(五):hive与hbase整合 目录: SparkSql 访问 hbase配置 测试验证 SparkSql 访问 hbase配置:  拷贝HBase的相关jar包到Spark节点上的$SPARK_HOME/lib目录下,清单如下: guava-.jar htrace-core--incubating.jar hbas…
1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. 2 DataFrames DataFrame是一个分布式的数据集合,该数据集合以命名列的方式进行整合.DataFrame可以理解为关系数据库中的一张表,也可以理解为R/Python中的一个data frame.DataFrames可以通过多种数据构造,例如:结构化的数据文件.hive中的表…
$spark-sql  --help  查看帮助命令 $设置任务个数,在这里修改为20个 spark-sql>SET spark.sql.shuffle.partitions=20; $选择数据库 spark-sql>use siat; $查询数据表 spark-sql>select * from test; $使用registerTempTable代替1.0版本的registerAsTable  ---注册临时表 $sql()将代替hql()来提交查询语句,统一了接口 使用regist…
整合: 1,需要将hive-site.xml文件拷贝到Spark的conf目录下,这样就可以通过这个配置文件找到Hive的元数据以及数据存放位置. 2,如果Hive的元数据存放在Mysql中,我们还需要准备好Mysql相关驱动,比如:mysql-connector-java-5.1.35.jar. 测试: 先启动hadoop集群,在启动spark集群,确保启动成功之后执行命令: spark-sql --master spark://bigdata-01:7077 --executor-memor…
SparkSql SparkSql是专门为spark设计的一个大数据仓库工具,就好比hive是专门为hadoop设计的一个大数据仓库工具一样. 特性: .易整合 可以将sql查询与spark应用程序进行无缝混合使用,同时可以使用java.scala.python.R语言开发代码 .统一的数据源访问 sparksql可以使用一种相同的方式来对接外部的数据源 val dataframe=SparkSession.read.格式("该格式文件的路径") .兼容hive 可以通过sparksq…
1.项目引入mysql和oracle驱动 2.将mysql和oracle驱动上传到hdfs 3.远程调试源代码如下: import org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} object jdbc { def main(args: Array[String]): Unit = { System.setProperty("hadoop.home.dir", "…
scala>val spark=new org.apache.spark.sql.SQLContext(sc) user.json {"age":"45","gender":"M","occupation":"7","userID":"4","zipcode":"02460"}{"age&qu…
Spark SQL的一个用途是执行SQL查询.Spark SQL也可以用来从现有的Hive安装中读取数据.有关如何配置此功能的更多信息,请参阅Hive表部分.从另一种编程语言中运行SQL时,结果将作为数据集/数据框返回.您还可以使用命令行 或通过JDBC / ODBC与SQL接口进行交互. 参考:http://spark.apache.org/docs/latest/sql-programming-guide.html…
-- Spark SQL 以编程方式指定模式 val sqlContext = new org.apache.spark.sql.SQLContext(sc) val employee = sc.textFile("/root/wangbin/employee.txt") ,satish, ,krishna, ,amith, ,javed, ,prudvi, val schemaString = "id,name,age" import org.apache.spa…
1.spark是什么? Spark是基于内存计算的大数据并行计算框架. 1.1 Spark基于内存计算 相比于MapReduce基于IO计算,提高了在大数据环境下数据处理的实时性. 1.2 高容错性和高可伸缩性 与mapreduce框架相同,允许用户将Spark部署在大量廉价硬件之上,形成集群. 2.spark编程 每一个spark应用程序都包含一个驱动程序(driver program ),他会运行用户的main函数,并在集群上执行各种并行操作(parallel operations) spa…
1.spark是什么? Spark是基于内存计算的大数据并行计算框架. 1.1 Spark基于内存计算 相比于MapReduce基于IO计算,提高了在大数据环境下数据处理的实时性. 1.2 高容错性和高可伸缩性 与mapreduce框架相同,允许用户将Spark部署在大量廉价硬件之上,形成集群. 2.spark编程 每一个spark应用程序都包含一个驱动程序(driver program ),他会运行用户的main函数,并在集群上执行各种并行操作(parallel operations) spa…
简要介绍了SparkSQL与Hive on Spark的区别与联系 一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题. 架构 Spark的架构如下图所示,主要包含四大组件:Driver.Master.Worker和Executor. Spark特点 · Spark可以部署在YARN上 · Spark原生支持对HDFS文件系统的访问 · 使用Scala语言编写 部署模型 1. 单机模型:主要用来开发测试.特点:Dr…
SparkSQL与Hive on Spark的比较 简要介绍了SparkSQL与Hive on Spark的区别与联系  一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题. 架构 Spark的架构如下图所示,主要包含四大组件:Driver.Master.Worker和Executor. Spark特点 Spark可以部署在YARN上 Spark原生支持对HDFS文件系统的访问 使用Scala语言编写 部署模型 单…
SparkSQL简介 SparkSQL的前身是Shark,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具,hive应运而生,它是当时唯一运行在Hadoop上的SQL-on-hadoop工具.但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率,为了提高SQL-on-Hadoop的效率,Shark应运而生,但又因为Shark对于Hive的太多依赖(如采用Hive的语法解析器.查询优化器等等),2014年spark团队停止对Shark的开…
Hadoop是啥?spark是啥? spark能完全取代Hadoop吗? Hadoop和Spark属于哪种计算计算模型(实时计算.离线计算)? 学习Hadoop和spark,哪门语言好? 哪里能找到比较全的学习资料? 1 Hadoop是啥?spark是啥? (1)先来了解下Hadoop历史渊源 Doug Cutting是Apache Lucene创始人, Apache Nutch项目开始于2002年,Apache Nutch是Apache Lucene项目的一部分.2005年Nutch所有主要算…
为了更方便的查询并产生报表, 需要使用shell脚本调用spark-sql spark/bin/spark-sql --master spark://host:7077 -f ${SQL_FILE} > ${OUT_FILE}…
1.环境 OS:Red Hat Enterprise Linux Server release 6.4 (Santiago) Hadoop:Hadoop 2.4.1 Hive:0.11.0 JDK:1.7.0_60 Spark:1.1.0(内置SparkSQL) Scala:2.11.2 2.Spark集群规划 账户:ebupt master:eb174 slaves:eb174.eb175.eb176 3.SparkSQL发展历史 2014年9月11日,发布Spark1.1.0.Spark从1…
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各有各的用处.互相之间又有重合.你能够用汤锅直接当碗吃饭喝汤,你能够用小刀或者刨子去皮. 可是每一个工具有自己的特性,尽管奇怪的组合也能工作,可是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器. HDFS(Hadoop Distributed File…
Spark作为一个开源数据处理框架,它在数据计算过程中把中间数据直接缓存到内存里,能大大提高处理速度,特别是复杂的迭代计算.Spark主要包括SparkSQL,SparkStreaming,Spark MLLib以及图计算. Spark核心概念简介 1.RDD即弹性分布式数据集,通过RDD可以执行各种算子实现数据处理和计算.比如用Spark做统计词频,即拿到一串文字进行WordCount,可以把这个文字数据load到RDD之后,调用map.reducebyKey 算子,最后执行count动作触发…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
转自:https://www.cnblogs.com/reed/p/7730360.html 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器.HD…
参考:https://www.itcodemonkey.com/article/9613.html gnite 和 Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且 Ignite 也会对 Spark 进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别.Ignite 和 Spark 都为 Apache 的顶级开源项目,遵循 Apache 2.0 开源协议,经过多年的发展,二者都已经脱离了单一的技术组件或者框架的范畴,向着多元化的生态圈…
大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器.HDFS(Hadoop Distributed FileSystem)的设计本质上是为了大量的数据…
--spark启动 spark-sql --退出 spark-sql> quit; --退出spark-sql or spark-sql> exit; 1.查看已有的database show databases; --切换数据库 use databaseName; 2.创建数据库 create database myDatabase; 3.登录数据库myDatabase; use myDatabase 4.查看已有的table show tables; -- 查看所有表 show table…
大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据 传统的文件系统是单机的,不能横跨不同的机器.HDFS(Hadoop Distributed FileSystem)的设计本质上是为了大量的数据能…
简要介绍了SparkSQL与Hive on Spark的区别与联系 一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题. 架构 Spark的架构如下图所示,主要包含四大组件:Driver.Master.Worker和Executor. Spark特点 Spark可以部署在YARN上 Spark原生支持对HDFS文件系统的访问 使用Scala语言编写 部署模型 单机模型:主要用来开发测试.特点:Driver.Mast…