主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-means大家都不会陌生,非常经典的一个聚类算法,已经50多年了,关于clustering推荐一篇不错的survey: Data clustering: 50 years beyond K-means.k-means表达的思想非常经典,就是对于复杂问题分解成两步不停的迭代进行逼近,并且每一步相对于前一步…
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂些计算机,大家以后有问题可以讨论. 今天我们来讲一下PRML第一章,这一章的内容是基于一些简单的例子对于机器学习中的基本概念给与介绍.这是为后续章节的介绍给一个铺垫.我今天讲的内容包括以下几个部分: 把书上的知识点做了个总结大概.首先我们来看一下,我个人理解的机器学习的定义:机器学习的分类有很多种,…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Distributions.今天的内容比较多,还是边思考边打字,会比较慢,大家不要着急,上午讲不完下午会接着讲. 顾名思义,PRML第二章Probability Distributions的主要内容有:伯努利分布. 二项式 –beta共轭分布.多项式分布 -狄利克雷共轭分布 .高斯分布 .频率派和贝叶斯派…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectation maximization.期望最大化. 怎么个意思呢,就是给你一堆观測样本.让你给出这个模型的參数预计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到參数预计值.这套路我懂啊,MLE! 但问题在于,假设这个问题存在中间的隐变量呢?会不会把我们的套路给…
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值…
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原因,采用一维高斯分布. 一维高斯分布的概率密度函数表示为: 多个高斯分布叠加在一起形成混合高斯分布: 其中:k 表示一共有 k 个子分布,.为什么累加之和为 1?因为哪怕是混合模型也表示一个概率密度,从负无穷到正无穷积分概率为 1,所以只有累加之和为 1才能保证,很简单的推导. 设总体 ξ,总体服从…
非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非常不错 混合高斯模型算法…
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html k-mean算法与EM K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用.看了Andrew Ng的这个讲义后才有些明白K-means后…
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 所有代码例如以下! def NDimensionGaussian(X_vector,U_Mean,CovarianceMatrix): #X…