大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如何聚类.今年的研究生数模中用大数据引出了一个国内还不怎么火热的概念——多流形结构.题目中那个给出的流形概念:流形是局部具有欧氏空间性质的空间,欧氏空间就是流形最简单的实例.从而在2000年提出了多流形学习:基于数据均匀采样于一个高维欧氏空间中的低维流形的假设,流形学习试图学习出高维数据样本空间中嵌入…
[阿里云产品公测]大数据下精确快速搜索OpenSearch 作者:阿里云用户小柒2012 相信做过一两个项目的人都会遇到上级要求做一个类似百度或者谷歌的站内搜索功能.传统的sql查询只能使用like 或者FIND_IN_SET来实现.后者性能稍微好点但是必须要逗号分隔才可以实现匹配.甚至多条件的话还可能用到OR这是极影响系统性能的. 最近公司项目需要.主要是系统查询缓慢.并且查询精度不敢恭维.一开始想到的是Lucene 毕竟是一个开放源代码的全文检索引擎工具包 并且官方还在持续更新中.当时闲暇时…
转自http://www.cnblogs.com/end/archive/2012/02/05/2339152.html 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”.多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Had…
大数据下的游戏营销模式革新 邓大付博士腾讯专家工程师 Bio:毕业于华中科技大学,现任腾讯IEG运营部数据中心技术副总监,负责腾讯游戏的数据挖掘相关工作,包括有用户画像,推荐系统,基础算法研究等.主要感兴趣的领域包括有分布式计算平台系统架构,机器学习算法等. =================================================== 这个讲座时间比较短,内容也比较少,不过还是让我开拓了眼界,比如TX游戏数据的规模.游戏服务器的规模以及游戏中一些算法.模型的应用. ==…
目录 摘要 算法关键 红黑树 稳定排序 代码框架 .h文件: .cpp文件 频率统计器的实现 接口设计与实现 接口设计 核心功能词频统计器流程 效果 单元测试 性能分析 性能分析图 问题发现 解决方案 异常处理 PSP表格记录 感想 基于sketch在大数据下的词频统计设计 引言 背景 解决方案 总结 参考文献: Github项目地址 摘要 本词频统计器包括行数统计.字符数统计.单词数统计.词频统计功能.基于红8黑树算法和稳定排序实现,其中红黑树算法为本词频统计器提供良好的效率.提供性能下限保证…
理想的索引,高效的索引建立考虑: :查询频繁度(哪几个字段经常查询就加上索引) :区分度要高 :索引长度要小 : 索引尽量能覆盖常用查询字段(如果把所有的列都加上索引,那么索引就会变得很大) : 索引长度直接影响索引文件的大小,影响增删改的速度,并间接影响查询速度(占用内存多). 针对列中的值,从左往右截取部分,来建索引 : 截的越短, 重复度越高,区分度越小, 索引效果越不好 : 截的越长, 重复度越低,区分度越高, 索引效果越好,但带来的影响也越大--增删改变慢,并间影响查询速度. 所以,…
在数据库中,常常会有Distinct Count的操作,比如,查看每一选修课程的人数: select course, count(distinct sid) from stu_table group by course; Hive 在大数据场景下,报表很重要一项是UV(Unique Visitor)统计,即某时间段内用户人数.例如,查看一周内app的用户分布情况,Hive中写HiveQL实现: select app, count(distinct uid) as uv from log_tabl…
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较好的价值,而深度学习在大数据场景下更能揭示数据内部的逻辑关系.本文就以大数据作为场景,通过自底向上的教程详述在大数据架构体系中如何应用深度学习这一技术.大数据架构中采用的是hadoop系统以及Kerberos安全认证,深度学习采用的是分布式的Tensorflow架构,hadoop解决了大数据的存储问…
一.基本概念 大数据量下,搞mysql,以下概念需要先达成一致 1)单库,不多说了,就是一个库 2)分片(sharding),水平拆分,用于解决扩展性问题,按天拆分表 3)复制(replication)与分组(group),用于解决可用性问题 4)分片+分组,这是大数据量下,架构的实际情况 二.大数据量下,mysql常见问题及解决思路 1)常见问题 如何保证可用性? 各色各异的读写比,怎么办? 如何做无缝倒库,加字段,扩容? 数据量大,怎么解决? 2)解决思路 2.1)可用性解决思路:复制 读库…
OLAPCube是一种典型的多维数据分析技术,Cube本身可以认为是不同维度数据组成的dataset,一个OLAP Cube 可以拥有多个维度(Dimension),以及多个事实(Factor Measure).用户通过OLAP工具从多个角度来进行数据的多维分析.通常认为OLAP包括三种基本的分析操作:上卷(rollup).下钻(drilldown).切片切块(slicingand dicing),原始数据经过聚合以及整理后变成一个或多个维度的视图. ROLAP 以关系模型的方式存储用作多维分析…
看到这个题目,你是否总感觉云里雾里?你是否真正懂什么叫“大数据”?商业智能BI和大数据又有着什么千丝万缕的联系?为什么说商业智能BI能在大数据中发挥价值? 大数据,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取.管理.处理.并整理成为帮助企业经营决策更积极目的的资讯.大数据拥有四个特征:数据量大.数据种类多.更新速度快.蕴藏的价值大但密度低.大数据虽然蕴含极大的价值,但是如果仅仅停留在数据收集.整理.存储和简单报表阶段的话,大数据就是一堆“IT库存”,成本高…
对于一直用Oracle的我,今天可是非常诧异,MySQL中同一个函数在不同数量级上的性能居然差距如此之大. 先看表ibmng(id,title,info)  唯一  id key 索引title 先看看两条语句: select * from ibmng limit 1000000,10 select * from ibmng limit 10,10 很多人都会认为不会有多大差别,但是他们都错了,差别太大了,(可能机器不同有点差距,但绝对10倍以上)具体执行时间留给好奇的同学. 这是为什么呢,都是…
在前一篇中介绍了使用API做Distinct Count,但是精确计算的API都较慢,那有没有能更快的优化解决方案呢? 1. Bitmap介绍 <编程珠玑>上是这样介绍bitmap的: Bitmap是一个十分有用的数据结构.所谓的Bitmap就是用一个bit位来标记某个元素对应的Value,而Key即是该元素.由于采用了Bit为单位来存储数据,因此在内存占用方面,可以大大节省. 简而言之--用一个bit(0或1)表示某元素是否出现过,其在bitmap的位置对应于其index.<编程珠玑&…
1.前提 启动hiveserver2服务 url,username,password. 2.官网 3.程序 4.结果 emp的第一列与第二列 5.源程序 package com.cj.it.hiveUdf; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class JdbcClient { private…
1.前提 启动hiveserver2服务 url,username,password 2.程序 3.结果 emp的第一列与第二列…
2016-07-29 14:13:23 钱曙光 阅读数 794 原文链接:https://blog.csdn.net/qiansg123/article/details/80124521 声明:本文为作者在CSDN技术公开课的分享原创整理,未经许可,禁止转载. 作者:郭炜,易观CTO,毕业于北京大学,曾任联想大数据总监.万达电商数据部总经理,曾在中金.IBM.Teradata公司担任大数据方向重要岗位.在智能硬件以及大数据分析领域具有丰富的理论和实践经验. 责编:钱曙光,关注架构和算法领域,寻求…
大数据时代的IT架构设计(来自互联网.银行等领域的一线架构师先进经验分享) IT架构设计研究组 编著   ISBN 978-7-121-22605-2 2014年4月出版 定价:49.00元 208页 16开 编辑推荐 l  一书在手,架构无忧 l  三十位一线架构师真知实践 l  百位顶级架构师献计献策 l  十万文字尽显架构精华 内容提要 <大数据时代的IT架构设计>以大数据时代为背景,邀请著名企业中的一线架构师,结合工作中的实际案例展开与架构相关的 讨论.<大数据时代的IT架构设计…
很荣幸受邀参加Top100Summit全球软件案例研究峰会,这次的大会主题是<技术推动商业变革>,组委会从全国投稿的460多件案例中甄选出100件具有代表价值的案例,进行为期4天的分享,第一天是开幕式,有业界的诸多牛人进行演讲,演讲分享的内容如下:-----------------------------------------------------------1.被颠覆的决策模式——大数据大价值   演讲者:张亚勤 微软全球资深副总裁.微软亚太研发集团主席2.软件定义IT时代   演讲者:…
摘要:Admaster数据挖掘总监 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. Hadoop在可伸缩性.健壮性.计算性能…
一.概述 1.kafka是什么 根据标题可以有个概念:kafka是storm的上游数据源之一,也是一对经典的组合,就像郭德纲和于谦 根据官网:http://kafka.apache.org/intro 的解释呢,是这样的: Apache Kafka® is a distributed streaming platform   ApacheKafka®是一个分布式流媒体平台 l Apache Kafka是一个开源消息系统,由Scala写成.是由Apache软件基金会开发的一个开源消息系统项目. l…
http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似HiveQL, Spark Streaming 实时数据流计算,MLlib 机器学习算法包,GraphX 图算法包 底层 SparkCore 实现了基本功能:任务调度,内存管理,错误恢复,存储交互等,SparkCore还包含了对RDD(弹性分布式数据集)的API定义 RDD是Spark对计算任务封装,现在不…
摘要:Admaster数据挖掘总监 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. Hadoop在可伸缩性.健壮性.计算性能…
互联网商业模式创新 电子商务与传统企业转型 “一带一路”信息化:格局与对策 “一带一路”沿线国家主权信用及风险防范 大数据下的资源整合和知识共享 地产数字化改革的痛点与处方 携手共建“一带一路” 数字经济与新实体经济 管理模式创新驱动新旧动能转换 中国企业股权激励现状分析及建议 “丝绸之路”起源和发展的中国视角 英国脱欧与欧盟未来 工业4.0与中国制造2025 互联网商业创新 战略管理的概念和基本框架(2)—公司战略与核心竞争力 战略管理的概念和基本框架(3)—公司战略与商业模式 战略管理的概念…
以P2P网贷为例互联网金融产品如何利用大数据做风控?   销售环节 了解客户申请意愿和申请信息的真实性:适用于信贷员模式. 风控关键点 亲见申请人,亲见申请人证件,亲见申请人签字,亲见申请人单位. 审批环节 进行基本信贷政策的核查,主要是核实申请信息.证件资料.是否伪冒申请. 系统会审核剔除不符合基本信贷政策要求的客户,例如有严重不良征集记录的,内部已经有违约记录的,或者近期有较大风险被纳入关联黑名单的,不符合监管政策要求的客户.经过基本审查后,不同的申请人会依据客户信息的分类,被自动分发到不同…
本章主要讲解大数据下如何做数据分片,所谓分片,即将大量数据分散在不同的节点,同时每个存储节点还要做副本备份. 而一般的抽象分片方法是, 先将数据映射到一个分片空间,这是多对一的关系,即一个数据分片区间可能有多条数据 再将分片空间映射到物理node,这也是多对一的关系,即一个物理node对应多个分片空间 具体到实现,通过hash进行分片是比较常见方式,而常见的hash方法是: round robin,hash取模,即通过取模将数据分散到各个node,这种方法跳过了分片空间,数据直接映射到了物理no…
如果要问最近几年,IT行业哪个技术方向最火?一定属于ABC,即AI + Big Data + Cloud,也就是人工智能.大数据和云计算. 这几年,随着互联网大潮走向低谷,同时传统企业纷纷进行数字化转型,基本各个公司都在考虑如何进一步挖掘数据价值,提高企业的运营效率.在这种趋势下,大数据技术越来越重要.所以,AI时代,还不了解大数据就真的OUT了! 相比较AI和云计算,大数据的技术门槛更低一些,而且跟业务的相关性更大.我个人感觉再过几年,大数据技术将会像当前的分布式技术一样,变成一项基本的技能要…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘,同样的利用微软案例数据进行简要总结. 应用场景介绍 通过上一篇中我们采用Microsoft决策树分析算法对已经发生购买行为的订单中的客户属性进行了分析,可以得到几点重要的信息,这里做个总结: 1.对于影响购买自行车行为最重要的因素为:家中是否有小汽车,其次是年龄,再次是地域 2.通过折叠树对于比较…
背景 mqtt的服务端ActiveMQ在windows上,多台PC机客户端不停地向MQ发送消息. 现象 观察MQ自己的日志data/activemq.log里显示,TCP链接皆异常断开.此时尝试从服务端ping其他客户端,发现皆无法ping通.可知服务端网卡必定故障无法正常运作. 定位思路 原有的组网采用多PC通过hub互联,工作方式上讲hub是广播模式,多PC大数据量发送必然引发广播风暴,使网卡超载运行直至异常. 改为百兆交换机后,交换机能够隔离冲突域,数据交互情况明显有所好转.但仍偶现网卡故…