CNN训练Cifar-10技巧】的更多相关文章

转自: http://weibo.com/p/1001603816330729006673 说明:这个翻译应该是来自原文:http://yyue.blogspot.hk/2015/01/a-brief-overview-of-deep-learning.html 翻译网上的哈,我觉得有很大一部分从没看到过,所以就翻译了下,如有不对的地方,欢迎指正:   1:准备数据:务必保证有大量.高质量并且带有干净标签的数据,没有如此的数据,学习是不可能的 2:预处理:这个不多说,就是0均值和1方差化 3:m…
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, 2018 · Updated September 15, 2018 1.目标-TensorFlow CNN 卷积神经网络 在之前的TensorFlow教程中,我们讨论了使用TensorFlow进行手写识别.今天我们讲学习怎样使用TensorFlow创建一个卷积神经网络关于CIFAR 10的分类模型…
Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教程就是我们这些新手的福利了. 第一步:如果前面的train_net.cpp编译通过了,那么这个就非常简单.Caffe训练和测试的数据都是需要leveldb格式的,niuzhiheng大牛已经给我们转好了MNIST的数据格式.如下图:  第二步:如上图所示,文件夹下有个get_mnist_leveld…
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 + python3.6 + win10 + i7 + 12G内存  数据样本大小95.3MB,训练时间大约20分钟 结果如下:…
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经…
fasttext: '''This example demonstrates the use of fasttext for text classification Based on Joulin et al's paper: Bags of Tricks for Efficient Text Classification https://arxiv.org/abs/1607.01759 Results on IMDB datasets with uni and bi-gram embeddin…
CIFAR-10是一个用于普适物体识别的数据集.Cifar-10由60000张32*32的RGB彩色图片构成,50000张训练图片,10000张测试图片,分为10类.cifar下载地址: http://www.cs.toronto.edu/~kriz/cifar.html 数据集分为3个版本,分别是Matlab.python和二进制格式的,这里选择二进制格式的下载.包含五个训练文件,一个测试文件: 1. cifar二进制数据库转换成lmdb文件 新建一个binToLmdb.bat的脚本文件,输入…
算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout…
1.样本要随机化,防止大数据淹没小数据 2.样本要做归一化.关于归一化的好处请参考:为何需要归一化处理3.激活函数要视样本输入选择(多层神经网络一般使用relu)4.mini batch很重要,几百是比较合适的(很大数据量的情况下)5.学习速率(learning rate)很重要,比如一开始可以lr设置为0.01,然后运行到loss不怎么降的时候,学习速率除以10,接着训练6.权重初始化,可用高斯分布乘上一个很小的数,这个可以看:权值初始化 7.Adam收敛速度的确要快一些,可结果往往没有sgd…
目录 1.简单的a+b 2.第一个HelloWorld程序! 3.三个数最大值 4.密码破译 5.母牛的故事 6.7.8.9.10 @(这里写自定义目录标题) 算法题训练网站:http://www.dotcpp.com 1.简单的a+b (1)题目地址:https://www.dotcpp.com/oj/problem1000.html (2)算法解析: 首先要能够接收到横向用空格分开的数据,并知道当运行的时候,在什么地方可以停止. (3)语法解析:   用java语法的时候scanner.ne…
Step 1:数据加载和处理 一般使用深度学习框架会经过下面几个流程: 模型定义(包括损失函数的选择)——>数据处理和加载——>训练(可能包括训练过程可视化)——>测试 所以自己写代码的时候基本上按照这四大模块四步走就ok了. 本例步骤: A.Load and normalizing the CIFAR10 training and test datasets using torchvisionB.Define a Convolution Neural NetworkC.Define a…
1.训练太慢 用nimibatch代替fullbatch https://www.cnblogs.com/guoyaohua/p/8724433.html 2.过拟合 最直接的解决过拟合问题的办法是增加训练数据量 使用dropout层 3.损失率波动不下降,欠拟合(梯度消失) Batch Normalization 4.训练开始时后出现损失函数值为nan(梯度爆炸) 学习率太大…
day1 100+100+0=200 T1 稍微比划一下,发现其实就是缩点双,然后区间最小值的和 T2 发现答案为原lis|+1|-1 对每个点做从前最长上升序列以及从后最长下降序列, 想了半个小时怎么判断唯一点,直接用map维护 T3 只想到了个状压dp, 结果调不出来 day2 //坑…
问题 I: 安装饮水机 时间限制: 1 Sec  内存限制: 128 MB提交 状态 题目描述 为倡导城市低碳生活,市文明办计划举办马拉松比赛,为确保比赛安全,沿途设置了一些观察点.每个观察点派一个观察员驻守.由于天气比较炎热,需要在沿途安装一些饮水机,使得观察员可以去取水喝.由于观察员每移动一个单位的路程,需要耗费一个单位的体力.而每个观察员的体力有限,只能在他体力能支持的范围内去取水喝,要不他就会渴死或累死.聪明的楠楠也参与了这次比赛的筹备工作.他的任务是设计一个理想的安装饮水机方案,使得安…
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络(GAN)等. 在计算机视觉领域,对卷积神经网络(简称为CNN)的研究和应用都取得了显著的成果.CNN网络最初的诞生收到了动物视觉神经机制的启发,目前已成功用于机器视觉等领域中. 技术博客Towards Data Science最近发布了一篇文章,作者Suki Lau.文章讨论了在卷积神经网络中,该…
也许简单看书就是没有刻意训练.更没有反馈,所以没有效果 我倒是想起自己,研究VCL源码的时候,都是自己给自己提问,然后苦思冥想.自己解决问题,然后Windows编程水平果然上了一个台阶.对什么叫做“框架”也有真正的了解. ----------------------------------------------------------------------------------------------- 有很多读者问李叫兽:为什么你年纪不大,经验并不多,但却能擅长复杂的商业策略和文案写作,…
一,train loss与test loss结果分析4666train loss 不断下降,test loss不断下降,说明网络仍在学习; train loss 不断下降,test loss趋于不变,说明网络过拟合; train loss 趋于不变,test loss不断下降,说明数据集100%有问题; train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目; train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
摘要 过去几年,深度学习在解决诸如视觉识别.语音识别和自然语言处理等很多问题方面都表现出色.在不同类型的神经网络当中,卷积神经网络是得到最深入研究的.早期由于缺乏训练数据和计算能力,要在不产生过拟合的情况下训练高性能卷积神经网络是很困难的.标记数据和近来GPU的发展,使得卷积神经网络研究涌现并取得一流结果.本文中,我们将纵览卷积神经网络近来发展,同时介绍卷积神经网络在视觉识别方面的一些应用. 引言 卷积神经网络(CNN)是一种常见的深度学习架构,受生物自然视觉认知机制启发而来.1959年,Hub…
使用Tensorflow在CIFAR-10二进制数据集上构建CNN 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 利用Tensorflow读取二进制CIFAR-10数据集 Tensorflow官方文档 tf.transpose函数解析 tf.slice函数解析 CIFAR10/CIFAR100数据集介绍 tf.train.shuffle_batch函数解析 Python urllib urlretrieve函数解析 Tensorflow实…
https://pjreddie.com/darknet/yolo/ 具体安装及使用可以参考官方文档https://github.com/pjreddie/darknet https://blog.csdn.net/app_12062011/article/details/77554288#comments     q强烈推荐阅读,系统学习深度学习(三十二)--YOLO v1,v2,v3 并且还有很多其他比较好的文章http://blog.csdn.net/u012235274/article/…
CVPR2017的一篇论文 Learning Deep CNN Denoiser Prior for Image Restoration: 一般的,image restoration(IR)任务旨在从观察的退化变量$y$(退化模型,如式子1)中,恢复潜在的干净图像$x$ $y \text{} =\text{}\textbf{H}x\text{}+\text{}v $ where $\textbf{H}$denotes 退化矩阵,$\textbf{v}$denotes 加性高斯白噪声(additi…
卷积神经网络是第一个被成功训练的多层神经网络结构,具有较强的容错.自学习及并行处理能力. 一.基本原理 1.CNN算法思想 卷积神经网络可以看作为前馈网络的特例,主要在网络结构上对前馈网络进行简化和改进,从理论上讲,反向传播算法可以用于训练卷积神经网络.卷积神经网络被广泛用于语音识别和图像分类等问题. 2.CNN网络结构 卷积神经网络是一种多层前馈网络,每层由多个二维平面组成.每个平面由多个神经元组成. 网络输入为二维视觉模式,作为网络中间层的卷积层(C)和抽样层(S)交替出现.网络输出层为前馈…
简介 caffe是一个友好.易于上手的开源深度学习平台,主要用于图像的相关处理,可以支持CNN等多种深度学习网络. 基于caffe,开发者可以方便快速地开发简单的学习网络,用于分类.定位等任务,也可以用于科研,在其源码基础上进行修改,实现自己的算法. 本文的主要目的,是介绍caffe的基本使用方法,希望通过本文,能让普通的工程师可以使用caffe训练自己的简单模型. 本文主要包括以下内容:运行caffe的例子训练cifar训练集.使用别人定义好的网络训练自己的数据.使用训练好的模型fine tu…
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题——什么是卷积神经网络(CNN)? CNN(Conv…
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情.当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”. 本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自…
主要来源模式识别课程大作业,本文首先感谢当初的助教和一起完毕作业的队友 matconvnet在matlab下封装了CNN常见算法,网址http://www.vlfeat.org/matconvnet/.本文採用matconvnet-1.0-beta16.tar.gz 第一题: 运用matconvet提供的mnist网络结构. 通过train目录中人脸图片训练网络(训练集).通过val目录调整网络结构(验证集),最后通过test目录測试网络性能(測试集) 第一题: 设计一个神经网络,并与第一题比較…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…