基于jaccard相似度的LSH】的更多相关文章

使用Python通过LSH建立推荐引擎 LSH:一个可以用来处理成百上千行的算法 前提: Python 基础 Pandas 学完本教程之后,解锁成就: 通过建立shingles 为LSH准备训练集和测试集 为LSH挑选参数 为LSH 建立Minhash 同过LSH 检索推荐会议论文 通过LSH 建立不同类型的推荐引擎 LSH-Locality-Sensitive Hashing 我们将基于文章的标题以及摘要来推荐会议论文.我们主要有两种类型的推荐系统:基于内容和协同过滤引擎 基于内容的推荐仅仅依…
上个月对一个小项目的效果进行改进,时间紧,只有不到一周的时间,所以思考了一下就用了最简单的方法来做,跟大家分享一下(项目场景用的类似的场景) 项目场景:分析一个产品的竞品,譬如app的竞品.网站的竞品等等 项目分析:简单来说就是竞品分析,竞品分析有很多比较成熟的方法,但是我认为,竞品分析其实和推荐有着很大的相关性.譬如我要分析一个技术网站的竞品有哪些,通俗点说,就是看一个用户经常访问哪些网站.不同类的用户访问网站的偏好是什么.在同类技术网站里与之定位想进,用户人群相似的网站有哪些等等.抽象来看,…
上个月对一个小项目的效果进行改进,时间紧,只有不到一周的时间,所以思考了一下就用了最简单的方法来做,效果针对上一版提升了5%左右,跟大家分享一下(项目场景用的类似的场景) 项目场景:分析一个产品的竞品,譬如app的竞品.网站的竞品等等 项目分析:简单来说就是竞品分析,竞品分析有很多比较成熟的方法,但是我认为,竞品分析其实和推荐有着很大的相关性.譬如我要分析一个技术网站的竞品有哪些,通俗点说,就是看一个用户经常访问哪些网站.不同类的用户访问网站的偏好是什么.在同类技术网站里与之定位想进,用户人群相…
今天给大家分享一款基于jq流畅度非常好的图片左右切换焦点图.这是一款基于jQuery实现的支持鼠标拖动切换jQuery特效下载.效果图如下: 在线预览   源码下载 实现的代码. html代码: <svg xmlns="http://www.w3.org/2000/svg" version="1.1" class="filters hidden"> <defs> <filter id="blur"…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用.单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高.基于此,单位觉得开发一款可以达到实用的智能查重系统.遍及网络文献,终未得到有价值的参考资料,这个也是自然.首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发…
一.引入 在做微博文本挖掘的时候,会发现很多微博是高度相似的,因为大量的微博都是转发其他人的微博,并且没有添加评论,导致很多数据是重复或者高度相似的.这给我们进行数据处理带来很大的困扰,我们得想办法把找出这些相似的微博,再对其进行去重处理. 如果只是要找到重复的微博,我们可以用两两比较所有的微博,对相同的微博值保留一条即可:但这只能在数据量很小的情况下才有可能,当我们有1000万条微博时,需要两两比较的微博有10^6亿(n*(n-1)/2)对,这个计算量是惊人的,即便你用map-reduce,拥…
局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似近期邻高速查找技术--局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包含了LSH的原理.LSH哈希函数集.以及LSH的一些參考资料. 一.局部敏感哈希LSH 在非常多应用领域中,我们面对和须要处理的数据往往是海量而且具有非常高的维度,如何高速地从海量的高维数据集合中找到与某个数据最相似(距离近期)的一个数据或多个数据成为了一个难点和问…
本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理.LSH哈希函数集.以及LSH的一些参考资料. 一.局部敏感哈希LSH 在很多应用领域中,我们面对和需要处理的数据往往是海量并且具有很高的维度,怎样快速地从海量的高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据成为了一个难点和问题.如果是低维的小数据集,我们通过线性查找(Linear Search)就可以容易解决,但如…
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低. 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高的相似度:相反,如果它们本身是不相似的,那么经过转换后它们应仍不具有相似性. 假设一个局部敏感哈希函数具有10个不同的输出值,而现在我们具有11个完全没有相似度的数据,那么它们经过这个哈希函…