在日常开发过程中,除了例行调度的任务和直接在开发环境下比如Scripts,开发,很多情况下是shell下直接搞起(小公司一般是这样),看一下常见的linux后台运行和关闭的命令,这里做一个总结,主要包括:fg.bg.jobs.&.nohup.ctrl+z.ctrl+c 命令等 一.& 加在一个命令的最后,可以把这个命令放到后台执行,如 watch -n 10 sh test.sh & #每10s在后台执行一次test.sh脚本 回到顶部 二.ctrl + z 可以将一个正在前台执行…
1.user ss is currently user by process 3234 问题原因:root --> ss --> root 栈递归一样 解决方式:exit 退出当前到ss再退出到root 然后执行命令即可. 2.列出某目录下的目录而不是文件 参考:ls --https://jingyan.baidu.com/article/e8cdb32b100dd537052badc5.html 3.登录用户与当前用户 whoami 当前用户 who am i 登录用户 其中有root权限才…
Linux下java nohup 后台运行关闭后进程停止的原因,不挂断后台运行命令 今天写sh脚本发现一终止命令程序就停止运行了,检查了很久才发现后面少了个&字符导致的!错误写法:nohup java -jar /home/zdzjar.jar >/home/logs/zdz.out 2>&1正确写法:nohup java -jar /home/zdzjar.jar >/home/logs/zdz.out 2>&1 &在后面加上 & 后就会自…
运行java jar: nohup java -jar **-0.0.1-SNAPSHOT.jar & 查看进程: 采用top或者ps aux命令.一般 如果后台是springboot,jar包,那么command名称为java.如果前端是nodejs打包,那么就是npm.[root@** wx]# toptop - 10:25:46 up 2 days, 11:37,  2 users,  load average: 0.00, 0.01, 0.05Tasks:  67 total,   1…
前面一篇文章提到大数据开发-Spark Join原理详解,本文从源码角度来看cogroup 的join实现 1.分析下面的代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.get…
Flink主要用来处理数据流,所以从抽象上来看就是对数据流的处理,正如前面大数据开发-Flink-体系结构 && 运行架构提到写Flink程序实际上就是在写DataSource.Transformation.Sink. DataSource是程序的数据源输入,可以通过StreamExecutionEnvironment.addSource(sourceFuntion)为程序 添加一个数据源 Transformation是具体的操作,它对一个或多个输入数据源进行计算处理,比如Map.Flat…
一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子项目.实际上,Hadoop中有一个综合性的文件系统抽象,它提供了文件系统实现的各类接口, 而HDFS只是这个抽象文件系统 的一种实现,但HDFS是各种抽象接口中应用最为广泛和最广为人知的一个. HDFS被设计成适合运行在通用和廉价硬件上的分布式文件系统.它和现有的分布式文件系统有很多共同点,但他和其…
下面结合具体的例子详述MapReduce的工作原理和过程. 以统计一个大文件中各个单词的出现次数为例来讲述,假设本文用到输入文件有以下两个: 文件1: big data offline data online data offline online data 文件2 hello data hello online hello offline 目标是统计这两个文件中各个单词的出现次数,很容易用肉眼算出各个词出现的次数: big:1 data:5 offline:3 online:3 hello:3…
1.Spark计算依赖内存,如果目前只有10g内存,但是需要将500G的文件排序并输出,需要如何操作? ①.把磁盘上的500G数据分割为100块(chunks),每份5GB.(注意,要留一些系统空间!) ②.顺序将每份5GB数据读入内存,使用quick sort算法排序. ③.把排序好的数据(也是5GB)存放回磁盘. ④.循环100次,现在,所有的100个块都已经各自排序了.(剩下的工作就是如何把它们合并排序!) ⑤.从100个块中分别读取5G/100=0.05 G入内存(100input bu…
点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统从 Airflow 迁移到 Apache  DolphinScheduler 的方案设计思考和生产环境实践. 这位来自浙江杭州的 90 后年轻人自 2019 年 9 月加入有赞,在这里从事数据开发平台.调度系统和数据同步组件的研发工作.刚入职时,有赞使用的还是同为 Apache 开源项目的 Airf…
linux后台运行命令两种方式: 1. command & : 后台运行,你关掉终端会停止运行   2. nohup command & : 后台运行,你关掉终端也会继续运行 简介 Linux/Unix 区别于微软平台最大的优点就是真正的多用户,多任务.因此在任务管理上也有别具特色的管理思想.我们知道,在 Windows 上面,我们要么让一个程序作为服务在后台一直运行,要么停止这个服务.而不能让程序在前台后台之间切换.而 Linux 提供了 fg 和bg 命令,让你轻松调度正在运行的任务.…
Vvio总共就一轮技术面+一轮HR面,技术面总体而言,比较宽泛,比较看中基础,面试的全程没有涉及简历上的东西(都准备好跟他扯项目了,感觉是抽取的题库...)具体内容如下: 1.熟悉Hadoop哪些组件? 答:hdfs.yarn.MapRedue.Hive 2.讲一讲yarn的调度过程? 答:blabla... 3.yarn的调度器有哪些? 答:FIFO.多队列分开调度.CapacityScheduler.FairScheduler...(当时没答全) 4.讲讲Hive内部表和外部表的区别? 答:…
1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.Flink.Beam等)的底层API上, 通过使用简易通用的的SQL语言构建SQL抽象层,降低实时开发的门槛. 流计算SQL的原理其实很简单,就是在SQL和底层的流计算引擎之间架起一座桥梁---流计算SQL被用户提交,被SQL引擎层翻译为底层的API并在底层的流计算引擎上执行.比如对Storm 来说,…
1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数据处理方案.这种方案就是Spark.Spark本质上是对Hadoop特别是MapReduce的补充.优化和完善,尤其是数据处理速度.易用性.迭代计算和复杂数据分析等方面. Spark Streaming 作为Spark整体解决方案中实时数据处理部分,本质上仍然是基于Spark的弹性分布式数据集(Re…
Storm是一个分布式.高容错.高可靠性的实时计算系统,它对于实时计算的意义相当于Hadoop对于批处理的意义.Hadoop提供了Map和Reduce原语.同样,Storm也对数据的实时处理提供了简单的 spout和bolt原语.Storm集群表面上看和Hadoop集群非常像,但Hadoop上面运行的是MapReduce的Job,而Storm上面运行的是topology(拓扑),它们非常不一样,比如一个MapReduce的Job最终会结束, 而一个Storm topology永远运行(除非显式杀…
4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的优化又分为mapjoin可以解决的join优化和mapjoin无法解决的join优化. 1.数据倾斜 倾斜来自于统计学里的偏态分布.所谓偏态分布,即统计数据峰值与平均值不相等的频率分布,根据峰值小于或大于平均值可分为正偏函数和负偏函数,其偏离的程度可用偏态系数刻画. 对应分布式数据处理来说,希望数据…
1.Hive出现背景 Hive是Facebook开发并贡献给Hadoop开源社区的.它是建立在Hadoop体系架构上的一层SQL抽象,使得数据相关人员使用他们最为熟悉的SQL语言就可以进行海量数据的处理.分析和统计工作, 而不是必须掌握Java等编程语言和具备开发MapReduce程序的能力.Hive SQL实际上先被SQL解析器进行解析然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生成MapReduce任务后交给Hadoop集群处理. 由于Hive SQL是翻译为Map…
大数据开发--Hbase协处理器案例 1. 需求描述 在社交网站,社交APP上会存储有大量的用户数据以及用户之间的关系数据,比如A用户的好友列表会展示出他所有的好友,现有一张Hbase表,存储就是当前注册用户的好友关系数据,如下 需求 使用Hbase相关API创建一张结构如上的表 删除好友操作实现(好友关系双向,一方删除好友,另一方也会被迫删除好友) 例如:uid1用户执行删除uid2这个好友,则uid2的好友列表中也必须删除uid1 2.需求分析实现 2.1 考虑到需求是个双向删除,第一想法是…
前面一篇讲到streamin读取kafka数据加工处理后写到kafka数据,大数据开发-Spark-开发Streaming处理数据 && 写入Kafka是针对比如推荐领域,实时标签等场景对于实时处理结果放到mysql也是一种常用方式,假设一些车辆调度的地理位置信息处理后写入到mysql 1.说明 数据表如下: create database test; use test; DROP TABLE IF EXISTS car_gps; CREATE TABLE IF NOT EXISTS ca…
Linux后台运行程序 最近写的程序需要部署到Linux服务器上,按照以前的方式,在运行后面增加&,程序会切换为后台运行.但因为Linux一般是通过ssh远程登录的,等到退出当前session之后,刚才那个后台程序也会停止运行,为了解决这个问题,通过nohup命令执行后台程序. nohup ./run.bat & 然而,通过nohup执行的程序,会把输出重定向到一个nohup.out文件中,但我的程序本身已经有输出了.运行了大概10天左右,nohup.out文件已经有10G左右了. 为了去…
因公司战略以及业务拓展,收大量java攻城狮以及大数据开发攻城狮. 职位信息: java攻城狮: https://job.cnblogs.com/offer/56032 大数据开发攻城狮: https://job.cnblogs.com/offer/56033 欢迎博客园的XDJM自荐和推荐! 此招聘长期有效 欢迎留言!…
4.聚合操作 4.1.group by 操作 group by操作是实际业务场景(如实时报表.实时大屏等)中使用最为频繁的操作.通常实时聚合的主要源头数据流不会包含丰富的上下文信息,而是经常需要实时关联相关 相关的维度表,并针对这些扩展的.丰富维度属性进行各种业务的统计. 在下面的实例中,订单流通过买家id关联了买家维度表,获取其所在省份信息,然后实时统计每天各个省份的iPhone销量信息. ---从源头接收订单实时流 create table test_order_stream ( gmt_c…
1.介绍 本节主要利用Stream SQL进行实时开发实战,回顾Beam的API和Hadoop MapReduce的API,会发现Google将实际业务对数据的各种操作进行了抽象,多变的数据需求抽象为三类: 离线的Map.Shuffle.Reduce以及 实时的ParDo.GroupByKey.Combine,这些抽象其实也对应了SQL的操作.SQL开发有如下几类: select操作:包括过滤.投影.表达式等. join操作:关联操作,包括和维度表关联以及窗口操作等. 聚合操作:全局group…
1.Hadoop数据仓库架构设计 如上图. ODS(Operation Data Store)层:ODS层通常也被称为准备区(Staging area),它们是后续数据仓库层(即基于Kimball维度建模生成的实时表和维度表层,以及基于事实表和明细表 加工的汇总层数据)加工数据的来源,同时ODS层也存储着历史的增量和或全量数据. 数据仓库层(DW:Data Warehouse): 是Hadoop数据平台的主体内容.数据仓库层的数据是ODS层数据经过ETL清洗.转换.加载生成的.Hadoop数据仓…
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_cnt_90day. B表为卖家基本信…
1.Hive 表 DDL 1.1.创建表 Hive中创建表的完整语法如下: CREATE [EXTERNAL] TABLE [IF NOT EXISTS]  table_name [ (col_name data_type [COMMET col_comment], . . .)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], . . . )] [CLUSTERED BY (c…
大数据在近两年可算是特别火,有很多人都想去学大数据,有java转大数据的,零基础学习大数据的.但是大数据真的好学吗. 我们先来了解一下什么是大数据. 大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合.大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力.适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统. 以下是大数据的定义 大数据由巨型数据集组成,这些数据集大小常超…
FusionInsight大数据开发 FusionInsight HD是一个大数据全栈商用平台,支持各种通用大数据应用场景. 技能需求 扎实的编程基础 Java/Scala/python/SQL/shell常见命令 掌握FusionInsight 熟悉业务开发 大数据应用开发流程 业务分析和方案设计 应用开发 应用调试 应用部署 应用开发关键点 账号 安全认证 场景约束 应用开发指南--调试 常规手段 协助资料 保障团队 总结: 认证是应用开发的关键点,要根据业务需求,申请合适账号,完成安全认证…
详解Kafka: 大数据开发最火的核心技术   架构师技术联盟 2019-06-10 09:23:51 本文共3268个字,预计阅读需要9分钟. 广告 大数据时代来临,如果你还不知道Kafka那你就真的out了(快速掌握Kafka请参考文章:如何全方位掌握Kafka核心技术)!据统计,有三分之一的世界财富500强企业正在使用Kafka,包括所有TOP10旅游公司,7家TOP10银行,8家TOP10保险公司,9家TOP10电信公司等等. LinkedIn.Microsoft和Netflix每天都用…