DP最长递增字符串】的更多相关文章

对于最简单DP问题,比如7 9 1 10 3中最长的递增字符串就是7 9 10,所以长度是3. 对于这个问题,就是从第二个开始,让后面的每一个字符都假设作为咱们要找的最长的字符串的最后一个字符,然后从第一个字符开始和找,这样逐渐找就能找到最长的^…^ 状态转移方程为 状态转移方程 DP[ i ] = max { 1 ,max(DP[ 0 ] ...DP[ k ]... DP[ i-1 ]) +1 |A[ k ] < A[ i ] } 具体解释见代码 #include<stdio.h> #…
#include <iostream> #include <limits.h> #include <vector> #include <algorithm> using namespace std; //获取最长递增子序列的递增数组 vector<int> getdp1(vector<int> arr) { vector<int> dp(arr.size()); for (int i = 0; i < int(arr…
链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so th…
Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up co…
B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1069 Appoint description: Description A group of researchers are designing an experiment to test the IQ of a monkey. They wi…
1.最长递增子序列模板poj2533(时间复杂度O(n*n)) #include<iostream> #include<stdio.h> #include<string.h> using namespace std; int dp[1005],a[1005]; int main() { int n; while(scanf("%d",&n)>0) { for(int i=1;i<=n;i++) scanf("%d&quo…
出题:求数组中最长递增子序列的长度(递增子序列的元素可以不相连): 分析: 解法1:应用DP之前需要确定当前问题是否具有无后效性,也就是每个状态都是对之前状态的一个总结,之后的状态仅会受到前一个状态的影响:对于递增子序列 而言,可以首先确定前面k个元素的最长子序列,然后计算增加一个元素之后的最长子序列.由于每个位置i都会与0-i的每个位置之前的LIS进行比较,并选 择保持递增的一个序列,所以总能找到LIS,但是时间复杂度为O(N^2),空间复杂度为O(N): 此解法的性能的瓶颈在于对于位置为i+…
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5.下面一步一步试着找出它.我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列.此外,我们用一个变量Len来记录现在最长算到多少了 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度…
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int…
题目:区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K 思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数.那么只要模拟nlogn写法的最长上升子序列的求法就行了.这里这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state的,最长上升子序列长为k的方案数这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state]…