opencv + numpy for python】的更多相关文章

OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 为什么有OpenCV 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1…
摘要:本篇文章主要讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素. 本文分享自华为云社区<[Python图像处理] 二.OpenCV+Numpy库读取与修改像素>,作者: eastmount. 一.传统读取像素方法 1.灰度图像,返回灰度值. 返回值=图像(位置参数),例:p = img[88,142] print§ # -*- coding:utf-8 -*- import cv2 #读取图片 img = cv2.imread("picture.bmp&q…
最近在学习过程中发现opencv有了很多变动, OpenCV 官方的 Python tutorial目前好像还没有改过来,导致大家在学习上面都出现了一些问题,现在做一个小小的罗列,希望对大家有用 做的是关于全景图像的拼接,关于sift和surf的语法之后有需要会另开文章具体阐述,此篇主要是解决大家困惑许久的问题. 笔者python3.x 首先是安装上,必须先后安装pip install opencv_python和pip install opencv-contrib-python==3.3.0.…
-- 图3.面部对齐.左:检测到面部标志和凸包.中:凸包上的点的Delaunay三角剖分.右:通过仿射扭曲三角形进行面部对齐. 1 人脸对齐 1.1 脸部地标检测 两个脸部的几何形状非常不同,因此我们需要对源脸部进行一些扭曲以使其覆盖目标脸部,但是我们还想确保我们不会使其扭曲而无法识别. 首先使用dlib在两个图像上检测面部标志.但是,与“ 脸部变形”不同,我们不也不应使用所有点进行脸部对齐. 我们只需要如图所示的人脸外边界上的点即可. 1.2 查找凸包在计算机视觉和数学术语中,点或形状的集合的…
一.实验内容: 利用sift算法,实现全景拼接算法,将给定的两幅图片拼接为一幅. 二.实验环境: 主机配置: CPU :intel core i5-7300 2.50GHZ RAM :8.0GB 运行环境:win10 64位操作系统 开发环境:python3.7   三.核心算法原理: 1.SIFT算法 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种…
# -*- coding: utf-8 -*- # @Time : 2019-02-11 09:39 # @Author : cxa # @File : bgr2gry.py # @Software: PyCharm import cv2 import pathlib import numpy as np import time import os file_path = pathlib.Path.cwd().joinpath("picture/1.png") char_path =…
一.安装:在之前的博客中已经写过:http://www.cnblogs.com/puyangsky/p/4763234.html 二.python数组切片知识: python中序列类有list.string.tuple.buffer.unicode等,它们都支持index, len, max, min, in, +, *, 切片等操作,对于切片操作来说,可以这么来看: consequence[start_index : end_index : step] start_index表示起始下标,正向…
网上关于opencv的安装已经有了不少资料,但是没有一篇资料能让我一次性安装成功,因此花费了大量时间去解决各种意外,希望这篇能给一些人带去便利,节省时间. 1.安装OpenCV所需的库 1 sudo apt-get install build-essential 2 sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev 3 sudo apt-get…
理解与计算机视觉相关的算法.模型以及OpenCV 3 API背后的基本概念,有助于开发现实世界中的各种应用程序(比如:安全和监视领域的工具). OpenCV 3是一种先进的计算机视觉库,可以用于各种图像和视频处理操作,通过OpenCV 3 能很容易地实现一些有前景且功能先进的应用(比如:人脸识别或目标跟踪等).<OpenCV 3计算机视觉:Python语言实现(第2版)>将从图像处理的基本操作出发,带你开启先进计算机视觉概念的探索之旅.计算机视觉是一个快速发展的学科,在现实生活中,它的应用增长…
疲劳检测 pan.baidu.com/s/1Ng_-utB8BSrXlgVelc8ovw #导入工具包 from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2 FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth&…