使用kd-tree加速k-means】的更多相关文章

Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1162  Solved: 618[Submit][Status][Discuss] Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对.   Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 N 行,每行两个整数 X,Y,表示一个点 的坐标.1 < =  N < =  100000, 1 < =  K < =  100, K < =…
Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 N 行,每行两个整数 X,Y,表示一个点 的坐标.1 < =  N < =  100000, 1 < =  K < =  100, K < =  N*(N−1)/2 , 0 < =  X, Y < 2^31. Output 输出文件第一行为一个整数,表示第 K 远点对的距离的平方(一定是个整数). Sample I…
Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1235  Solved: 418[Submit][Status][Discuss] Description The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional sp…
Range Search (kD Tree) The range search problem consists of a set of attributed records S to determine which records from Sintersect with a given range. For n points on a plane, report a set of points which are within in a given range. Note that you…
以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac/blog/1693 https://en.wikipedia.org/wiki/K-d_tree http://homes.ieu.edu.tr/hakcan/projects/kdtree/kdTree.html k-d tree就是一个把一个平面(或超平面)划分的东西… 例如一维情况就是在划分…
这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-dimensional tree) is a binary space-partitioning tree for organizing points in a \(k\)-dimensional space. \(k\)-d trees are a useful data structure for…
题目1: BZOJ 2716 题目大意:给出N个二维平面上的点,M个操作,分为插入一个新点和询问到一个点最近点的Manhatan距离是多少. 算法讨论: K-D Tree 裸题,有插入操作. #include <cstdio> #include <iostream> #include <cstring> #include <cstdlib> #include <algorithm> using namespace std; const int i…
Today, TripAdvisor held a tech talk in Columbia University. The topic is about k-d Tree implemented in TripAdvisor  to efficiently search MASSIVE location tree. Problem Millions of locations, it's tough to perform Nearest Neighbor Search. Solution Us…
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询(K…
1. [BZOJ]1941: [Sdoi2010]Hide and Seek 题目大意:给出n个二维平面上的点,一个点的权值是它到其他点的最长距离减最短距离,距离为曼哈顿距离,求最小权值.(n<=500,000) 思路:k-d tree裸题. #include<cstdio> #include<algorithm> using namespace std; inline int read() { int x;char c; '); )+(x<<)+c-'; ret…