FunDA的并行数据库读取功能是指在多个线程中同时对多个独立的数据源进行读取.这些独立的数据源可以是在不同服务器上的数据库表,又或者把一个数据库表分成几个独立部分形成的独立数据源.当然,并行读取的最终目的是提高程序的运算效率.在FunDA中具体的实现方式是对多个独立的数据流进行并行读取形成一个统一综合的数据流.我们还是用上次示范所产生的表AQMRPT作为样板数据.在这次示范里我们需要把AQMRPT表中的STATENAME,COUNTYNAME字段抽取出来形成两个独立的表STATE和COUNTY.…
作者 王枫发布于2014年2月19日 综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个时代决胜未来的关键因素,而基于大数据的应用,也在潜移默化地渗透到社会的方方面面,影响到每一个人的日常生活,人们日常生活中看到的电视节目.浏览的网页.接收到的广告,都将是基于大数据分析之后提供的有针对性的内容. 微软在大数据领域的战略重点,在于更好地帮助客户"消费"大数据,让所有的用户都能够…
综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个时代决胜未来的关键因素,而基于大数据的应用,也在潜移默化地渗透到社会的方方面面,影响到每一个人的日常生活,人们日常生活中看到的电视节目.浏览的网页.接收到的广告,都将是基于大数据分析之后提供的有针对性的内容. 微软在大数据领域的战略重点,在于更好地帮助客户“消费”大数据,让所有的用户都能够从几乎任何规模任何类型的任何数据当中获得可以转化…
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUTORIAL 在解决任何机器学习问题时,都需要花费大量的精力来准备数据.PyTorch提供了许多工具来简化数据加载,希望能使代码更具可读性.在本教程中,我们将看到如何加载和预处理/增强非平凡数据集中的数据. 为了运行下面的教程,请确保你已经下载了下面的数据包: scikit-image:为了图片的输入…
FunDA的并行运算施用就是对用户自定义函数的并行运算.原理上就是把一个输入流截分成多个输入流并行地输入到一个自定义函数的多个运行实例.这些函数运行实例同时在各自不同的线程里同步运算直至耗尽所有输入.并行运算的具体函数实例数是用fs2-nondeterminism的算法根据CPU内核数.线程池配置和用户指定的最大运算实例数来决定的.我们在这次示范里可以对比一下同样工作内容的并行运算和串形运算效率.在前面示范里我们获取了一个AQMRPT表.但这个表不够合理化(normalized):state和c…
FunDA最重要的设计目标之一就是能够实现数据库操作的并行运算.我们先重温一下fs2是如何实现并行运算的.我们用interleave.merge.either这几种方式来同时处理两个Stream里的元素.interleave保留了固定的交叉排列顺序,而merge和either则会产生不特定顺序,这个现象可以从下面的例子里看到: ) ) //当前元素跟踪显示 def log[A](pre: String): Pipe[Task,A,A] = _.evalMap { row => Task.dela…
 本章分析Nio Channel的数据读取功能的实现. Channel读取数据需要Channel和ChannelHandler配合使用,netty设计数据读取功能包括三个要素:Channel, EventLoop和ChannelHandler.Channel有个read方法,这个方法不会直接读取数据,它的作用是通知持有当前channel的eventLoop可以从这个这个channel读取数据了,这个方法被调用之后eventLoop会在channel有数据可读的时候从channel读出数据然后把数…
@Getter / @Setter @Getter 和 @Setter,分别实现了 Gette r和 Setter 方法. package com.huey.hello.bean; import java.util.Date; import lombok.Getter; import lombok.Setter; public class Student { @Getter @Setter private int studNo; @Getter @Setter private String st…
Recently we were building a Shiny App in which we had to load data from a very large dataframe. It was directly impacting the app initialization time, so we had to look into different ways of reading data from files to R (in our case customer provide…
https://www.citusdata.com/blog/2022/03/26/test-drive-citus-11-beta-for-postgres/ Citus 11.0 beta 的最大变化是 schema 和 Citus 元数据现在在整个数据库集群中自动同步.这意味着您始终可以从 Citus 集群中的任何节点查询分布式表! 使用 Citus 最简单的方法是连接到协调器节点并将其用于 schema 更改和分布式查询,但是对于要求非常高的应用程序,您现在可以选择通过使用不同的连接字符…