首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「LOCAL」大括号树
】的更多相关文章
Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) 的简单有向路径上的字符串成括号序列,记其正则匹配的子串个数为 \(\operatorname{ans}(u,v)\).求: \[\sum_{u=1}^n\sum_{v=1}^n\operatorname{ans}(u,v)\bmod998244353 \] \(n\le2\times10^5\). \(…
Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) 个果子合并成一个,代价为所挑果子权值之和.求合并所有果子的最少代价.\(T\) 组数据. \(T\le10\),\(n,a_i\le10^5\),\(2\le L\le R\le\sum_{i=1}^na_i\). \(\mathcal{Solution}\) 把合并考虑成一棵树,树叉在 \…
Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 \(l_i\),定义树的权值为: \[\sum_{\displaystyle u<v\land c_u=c_v\land\\\operatorname{LCA}(u,v)\not=u\land\operatorname{LCA}(u,v)\not=v}l_u\oplus l_v \] 现有 \(…
Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全部连通. \(n\le32000\). \(\mathcal{Solution}\) 考虑用中位数的标准姿势统计每条边的贡献--小于它的设为 \(-1\),大于它的设为 \(+1\),边权相等按编钦定大小关系.那么这条边的贡献就是路径两端权值加和为 \(0\) 的路径对数(显然每对路径连起来…
Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻转一个区间: 区间 \(a\) 值加上一个数: 区间 \(a\) 值乘上一个数: 区间 \(a\) 值赋为一个数: 询问 \(\sum_{i=l}^r\sum_{j=i}^ra_j^3\bmod10086001\). 特别地,若区间操作指名类型为 \(1\),则需要将输入的左端点替换为输入区间内…
Solution -「LOCAL」人口迁徙
\(\mathcal{Description}\) \(n\) 个点,第 \(i\) 个点能走向第 \(d_i\) 个点,但从一个点出发至多走 \(k\) 步.对于每个点,求有多少点能够走到它. \(n\le5\times10^5\). \(\mathcal{Solution}\) 显然这些点构成一片内向基环树森林.考虑每个点的贡献,若其向上走 \(k\) 步仍不能到环上,那一定只在树内对一条链贡献,树上差分一下.否则,该点会向到根的每个点贡献,并向环上一段连续的点贡献,后者维护一个…
Solution -「LOCAL」「cov. HDU 6864」找朋友
\(\mathcal{Description}\) Link.(几乎一致) 给定 \(n\) 个点 \(m\) 条边的仙人掌和起点 \(s\),边长度均为 \(1\).令 \(d(u)\) 表示 \(u\) 到 \(s\) 的最短距离.对于任意一个结点的排列 \(\{p_1,p_2,\cdots,p_n\}\),记 \(t_i\) 满足 \(p_{t_i}=i\),称排列合法,当且仅当: \[(\forall(u,v)\in E)\left((d(u)<d(v)\rightarrow t…
Solution -「LOCAL」模板
\(\mathcal{Description}\) OurOJ. 给定一棵 \(n\) 个结点树,\(1\) 为根,每个 \(u\) 结点有容量 \(k_u\).\(m\) 次操作,每次操作 \((u,c)\),表示在 \(u\) 到根路径上的每个结点放一个颜色为 \(c\) 的小球,但若某一结点容量已满,则跳过该结点不放球.求所有操作完成后每个结点拥有小球的颜色种数. \(n,m\le10^5\). \(\mathcal{Solution}\) 优雅的离线算法. 首先,若…
Solution -「LOCAL」割海成路之日
\(\mathcal{Description}\) OurOJ. 给定 \(n\) 个点的一棵树,有 \(1,2,3\) 三种边权.一条简单有向路径 \((s,t)\) 合法,当且仅当走过一条权为 \(3\) 的边之后,只通过了权为 \(1\) 的边.\(m\) 次询问,每次询问给定 \(a,b,s,t\),表示将边 \((a,b)\) 的权 \(-1\)(若权已为 \(1\) 则不变),并询问 \(t\) 是否能走到 \(s\):有多少点能够走到 \(s\). \(n,m\le 3…
Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\ope…