看似小小的中介,废了我好多脑细胞,这个东西真的不简单,从7月份有人问我,我多重中介,到现在的纵向数据中介,从一般的回归做法,到结构方程框架下的路径分析法,到反事实框架做法,从中介变量和因变量到是连续变量到中介变量和因变量是分类变量,很浩渺的系统知识,今天开始一点一点给大家写. 今天就和大家一起探讨纵向数据的中介效应检验,一般来讲考虑因果关系的时间先后顺序,纵向数据才是探讨中介的理想数据形式: In practice, it is strongly recommended to establish…
最近看了好多潜类别轨迹latent class trajectory models的文章,发现这个方法和我之前常用的横断面数据的潜类别和潜剖面分析完全不是一个东西,做纵向轨迹的正宗流派还是这个方法,当然了这个方法和潜增长和增长曲线模型在做法并没有实际区别,都是用的hlme这个函数.但是文献中的叫法和花样就比较多了. 像本文写的latent class trajectory models,之前写的潜类别增长模型LCGA和增长曲线模型GMM都是潜类别线性混合模型latent class linear…
R语言读写数据 一般做模型的时候,从外部的excel中读入数据,我现在常用的比较多的是read_csv(file) 读入之前先把excel数据转化成.csv格式 同样的把结果输出来的时候用的是write_csv(file) 我记得加载的包是zoo.. 我目前用到的是这个,回头补充…
临床预测模型也是大家比较感兴趣的,今天就带着大家看一篇临床预测模型的文章,并且用一个例子给大家过一遍做法. 这篇文章来自护理领域顶级期刊的文章,文章名在下面 Ballesta-Castillejos A, Gómez-Salgado J, Rodríguez-Almagro J, Hernández-Martínez A. Development and validation of a predictive model of exclusive breastfeeding at hospital…
R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y = ,all = ) 函数. #合并ID<-c(1,2,3,4)name<-c("A","B","C","D")score<-c(60,70,80,90)student1<-data.frame(ID,na…
今天要给大家分享的统计方法是马尔可夫多态模型,思路来源是下面这篇文章: Ward DD, Wallace LMK, Rockwood K Cumulative health deficits, APOE genotype, and risk for later-life mild cognitive impairment and dementia Journal of Neurology, Neurosurgery & Psychiatry 2021;92:136-142. 我们知道轻度认知损害…
今天给大家写广义混合效应模型Generalised Linear Random Intercept Model的第一部分 ,混合效应logistics回归模型,这个和线性混合效应模型一样也有好几个叫法: Mixed Effects Logistic Regression is sometimes also called Repeated Measures Logistic Regression, Multilevel Logistic Regression and Multilevel Bina…
之前给大家写过一篇数据清洗的文章,解决的问题是你拿到原始数据后如何快速地对数据进行处理,处理到你基本上可以拿来分析的地步,其中介绍了如何选变量如何筛选个案,变量重新编码,如何去重,如何替换缺失值,如何计算变量等等------R数据分析:数据清洗的思路和核心函数介绍 今天呢,就更进一步,对于一个处理好的数据,我们就可以进行统计分析了,本文的思路就是对照期刊论文的一般流程写写如何快速的实现一篇论文的统计过程并简洁高效地展示结果.依然提醒大家,请先收藏本文再往下读哈. 先做描述统计 基本上文章结果部分…
之前给大家写过一个临床预测模型:R数据分析:跟随top期刊手把手教你做一个临床预测模型,里面其实都是比较基础的模型判别能力discrimination的一些指标,那么今天就再进一步,给大家分享一些和临床决策实际相关的指标,主要是校准calibration和决策曲线Decision curve analysis. 校准曲线 做预测模型都应该报告校准曲线的: Reporting on calibration performance is recommended by the TRIPOD (Tran…
预测模型在各个领域都越来越火,今天的分享和之前的临床预测模型背景上有些不同,但方法思路上都是一样的,多了解各个领域的方法应用,视野才不会被局限. 今天试图再用一个实例给到大家一个统一的预测模型的做法框架(R中同样的操作可以有多种多样的实现方法,框架统一尤其重要,不是简单的我做出来就行).而是要: eliminate syntactical differences between many of the functions for building and predicting models 数据…