CVPR2020:三维实例分割与目标检测 Joint 3D Instance Segmentation and Object Detection for Autonomous Driving 论文地址: http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Joint_3D_Instance_Segmentation_and_Object_Detection_for_Autonomous_Driving_CVPR_2020_pape…
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…
3D点云点云分割.目标检测.分类 原标题Deep Learning for 3D Point Clouds: A Survey 作者Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun 原文参考链接:https://arxiv.org/abs/1912.12033 导读 3D点云学*( Point Clouds)作为*年来的研究热点之一,受到了广泛关注,每年在各大会议上都有大量的相关文章发表.当前…
SOLOv 2:实例分割(动态.更快.更强) SOLOv2:  Dynamic, Faster and Stronger 论文链接: https://arxiv.org/pdf/2003.10152.pdf 代码链接:https://github.com/aim-uofa/AdelaiDet 摘要 在这项工作中,本文的目标是建立一个简单,直接,快速的实例分割框架,具有很强的性能.本文遵循王等人SOLO的原则."SOLO:按位置分割对象"[33].重要的是,本文进一步通过动态学习对象分段…
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: Fully Convolutional One-Stage Object Detection),该算法是一种基于FCN的逐像素目标检测算法,实现了无锚点(anchor-free).无提议(proposal free)的解决方案,并且提出了中心度(Center-ness)的思想,同时在召回率等方面表…
多加速器驱动AGX的目标检测与车道分割 Object Detection and Lane Segmentation Using Multiple Accelerators with DRIVE AGX 自动驾驶汽车需要快速.准确地感知周围环境,以便同时实时完成一系列广泛的任务.系统需要在各种环境.条件和情况下处理障碍物检测.确定车道边界.交叉口检测和多个功能之间的标志识别,并在汽车设置的功率限制范围内快速完成这项工作.DRIVE AGX平台是专门为满足这些要求而设计的. 驱动平台由Xavier…
全卷积目标检测:FCOS FCOS: Fully Convolutional One-Stage Object Detection 原文链接:https://arxiv.org/abs/1904.01355 代码链接:https://github.com/tianzhi0549/FCOS/ 摘要 本文提出了一种完全卷积的一级目标检测器(FCOS),以模拟语义分割,以逐像素预测的方式解决目标检测问题.几乎所有最先进的目标探测器,如RetinaNet.SSD.YOLOv3和更快的R-CNN,都依赖于…
前言 前面给大家介绍了使用LabVIEW工具包实现图像分类,目标检测,今天我们来看一下如何使用LabVIEW实现Mask R-CNN图像实例分割. 一.什么是图像实例分割? 图像实例分割(Instance Segmentation)是在语义检测(Semantic Segmentation)的基础上进一步细化,分离对象的前景与背景,实现像素级别的对象分离.并且图像的语义分割与图像的实例分割是两个不同的概念,语义分割仅仅会区别分割出不同类别的物体,而实例分割则会进一步的分割出同一个类中的不同实例的物…
一.INTRODUCTION部分 (1)先根据时间轴讲了历史 (2)常见的基础模型 (3)讲了深度学习的优势 那就是feature learning,而不用人工划分的feature engineering:为什么要用深层网络而不是浅层网络,深层网络适合相当多的情况而浅层网络不一定计算量小,也就是说浅层网络不适合很多情况. 并用大量文献数据展示了实验结果 总结一下INTRODUCTION部分,有以下几个结论: 后面三个部分,详细介绍了目标识别.目标分割和目标检测,有兴趣可以参考ppt全文: htt…
定位: 针对分类利用softmax损失函数,针对定位利用L2损失函数(或L1.回归损失等) 人关节点检测 针对连续变量和离散变量需要采用不同种类的损失函数. 识别: 解决方案: 1.利用滑动窗口,框的大小和位置无法确定,目标检测需要巨大的计算量,pass 2.备选区域 利用区域选择网络ROI,将ROI处理成固定尺寸(与下游网络输入尺寸匹配),经过CNN后利用SVM分类(RCNN也会对输入的边界作补偿或修正) 基于区域选择网络也可以作为修正boundingbox的回归 RCNN的问题: Fast…