首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
统计学习:线性可分支持向量机(SVM)
】的更多相关文章
线性可分支持向量机--SVM(1)
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: 通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: *什么是间隔最大化呢? 首先需要定义间隔, 下面介绍了函数间隔和几何间隔,几何间隔可以理解为训练点到超平面的距离, 二维中就是点到直线的距离,我们要做的就是最小化几何间隔. 函数间隔和几何间隔 函数间隔 给定训练数据…
统计学习:线性可分支持向量机(SVM)
模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集,仿射集和凸集…
统计学习2:线性可分支持向量机(Scipy实现)
1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集…
svm 之 线性可分支持向量机
定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量机. 目录: • 函数间隔 • 几何间隔 • 间隔最大化 • 对偶算法 1.函数间隔 考虑分类算法的两个方面:确信度 + 正确性 确信度:用点到分离超平面的距离表示,间接表示为$w ⋅x_i+b$,分类的结果有多大的自信保证它是正确的: 正确性:$y_i$ 与 $w ⋅x_i+b$的符号是否一致,表征分类是否正确: 结合以上两点, 某一实例点的函数间隔的定义即:$γ ̂_…
线性可分支持向量机与软间隔最大化--SVM(2)
线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: 但是,上述的解决方法对于下面的数据却不是很友好, 例如,下图中黄色的点不满足间隔大于等于1的条件 这样的数据集不是线性可分的, 但是去除少量的异常点之后,剩下的点都是线性可分的, 因此, 我们称这样的数据集是近似线性可分的. 对…
OpenCV 学习笔记 07 支持向量机SVM(flag)
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督式学习模型及相关的学习算法:在给定的一组训练实例中,每个训练实例会被标记其属性类别(两个类别中的一个),是非概率的二元线性分类器. SVM模型是将采用尽可能宽的.明显的间隔将实例分开,使得实例分属不同的空间:然后将新的实例映射到某一空间,基于新的实例所属空间来预测其类别. SVM 除了可进行线性分类…
统计学习:线性支持向量机(SVM)
学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
统计学习3:线性支持向量机(Pytorch实现)
学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
支持向量机(SVM)的推导(线性SVM、软间隔SVM、Kernel Trick)
线性可分支持向量机 给定线性可分的训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习到的分离超平面为 \[w^{\ast }x+b^{\ast }=0\] 以及相应的决策函数 \[f\left( x\right) =sign\left(w^{\ast }x+b^{\ast } \right)\] 称为线性可分支持向量机 如上图所示,o和x分别代表正例和反例,此时的训练集是线性可分的,这时有许多直线能将两类数据正确划分,线性可分的SVM对应着能将两类数据正确划分且间隔最大的直线. 函数…
机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…