机器学*——K*邻算法(KNN)】的更多相关文章

1 前言 Kjin邻法(k-nearest neighbors,KNN)是一种基本的机器学*方法,采用类似"物以类聚,人以群分"的思想.比如,判断一个人的人品,只需观察他来往最密切的几个人的人品好坏就可以得出.这里就运用了KNN的思想.KNN方法可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于做预测时候的决策方式不同. KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最jin的K个样本,预测为里面有最多类别数的类别. KNN做回归时…
目录 1.理解使用KNN进行分类 KNN特点 KNN步骤 1)计算距离 2)选择合适的K 3)数据准备 2.用KNN诊断乳腺癌 1)收集数据 2)探索和准备数据 3)训练模型 4)评估模型的性能 5)提高模型性能 1.理解使用KNN进行分类 KNN特点 近邻分类器:一种懒惰学习器,即把未标记的案例归类为与它们最相似的带有标记的案例所在的类.当一个概念很难定义,但你看到它时知道它是什么,就适合用KNN分类. KNN优点:简单有效:数据分布无要求:训练快 KNN缺点:不产生模型(发现特征间关系能力有…
k邻*算法具体应用:2-2约会网站配对 心得体会: 1.对所有特征值进行归一化处理:将特征值单位带来的距离影响消除,使所有特征同权重--然后对不同的特征进行加权2.对于相互独立的特征,可以通过建立(特征值-类型 )图表进行计算,但是多个特征值是相互关联的则需要建立多维图表 #2-2约会网站配对 #将文本记录转换为NumPy def file2matrix(filename): love_dictionary = {'largeDoses':3, 'smallDoses':2, 'didntLik…
[机器学*]k-*邻算法(kNN) 学*笔记 标签(空格分隔): 机器学* kNN简介 kNN算法是做分类问题的.思想如下: KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为: 计算测试数据与各个训练数据之间的距离: 按照距离的递增关系进行排序: 选取距离最小的K个点: 确定前K个点所在类别的出现频率: 返…
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import pand…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
心得体会: 需要思考如何将现实对象转化为特征向量,设置特征向量时记住鸭子定律1 鸭子定律1 如果走路像鸭子.说话像鸭子.长得像鸭子.啄食也像鸭子,那它肯定就是一只鸭子 事物的外在特征就是事物本质的表现 # 2-3手写识别系统 #32*32转1*1024数组 def img2vector(filename): returnVect=zeros((1,1024)) fr=open(filename) for i in range(32): lineStr=fr.readline() for j in…
k临*算法(解决分类问题): 已知数据集,以及该数据对应类型 给出一个数据x,在已知数据集中选择最接*x的k条数据,根据这k条数据的类型判断x的类型 具体实现: from numpy import * import operator def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #已知数据集 labels = ['A','A','B','B'] #已知数据集对应的类型 return group,la…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
K-近邻算法(k-Nearest Neighbor,简称kNN)采用测量不同特征值之间的距离方法进行分类,是一种常用的监督学习方法,其工作机制很简单:给定测试样本,基于某种距离亮度找出训练集中与其靠近的k个训练样本,然后基于这k个"邻居"的信息进行预测.kNN算法属于懒惰学习,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间靠小为零,在收到测试样本后在进行处理,所以可知kNN算法的缺点是计算复杂度高.空间复杂度高.但其也有优点,精度高.对异常值不敏感.无数据输入设定. 借张图来说:…