C++数据结构之二叉查找树(BST)】的更多相关文章

C++数据结构之二叉查找树(BST) 二分查找法在算法家族大类中属于“分治法”,二分查找的过程比较简单,代码见我的另一篇日志,戳这里!因二分查找所涉及的有序表是一个向量,若有插入和删除结点的操作,则维护表的有序性所花的代价是O(n). 就查找性能而言,二叉查找树和二分查找不分伯仲,但是,就维护表的有序性而言,二叉排序树无须移动结点,只需修改指针即可完成插入和删除操作,且其平均的执行时间均为O(lgn),因此更有效.二叉查找树,顾名思义,是一种可以用来二分查找的树数据结构,其左孩子比父节点小,右孩…
一. 二叉树 1. 什么是二叉树? 在计算机科学中,二叉树是每个结点最多有两个子树的树结构. 通常子树被称作“左子树”(left subtree)和“右子树”(right subtree). 二叉树常被用于实现二叉查找树和二叉堆. 2. 二叉树是一个递归的定义 (1)根结点为空则定义该二叉树为空 (2)一个根结点,可以导出一棵完整的二叉树,而它的左孩子或者右孩子,同样可以是代表一棵完整二叉树的根结点,不论它是否为空.即左子树和右子树同样为二叉树. 3. 二叉堆 (1)二叉堆一般由数组实现,分为大…
平衡树前传之BST 二叉查找树(\(BST\)),是一个类似于堆的数据结构, 并且,它也是平衡树的基础. 因此,让我们来了解一下二叉查找树吧. (其实本篇是作为放在平衡树前的前置知识的,但为了避免重复懒得写就单独拎了出来) 首先,二叉查找树,是一个树形的数据结构废话,树上的每个节点有一个权值\(val\). 而树中的任意一个节点,都满足以下性质: 该节点的权值不小于它左子树中任意节点的权值. 该节点的权值不大于它右子树中任意节点的权值. 显然,二叉查找树的中序遍历就是一个递增序列. 那么接下来,…
数据结构:二叉查找树(C语言实现) ►写在前面 关于二叉树的基础知识,请看我的一篇博客:二叉树的链式存储 说明: 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: 1.若其左子树不空,则左子树上所有结点的值均小于它的根结点的值: 2.若其右子树不空,则右子树上所有结点的值均大于它的根结点的值; 3.其左.右子树也分别为二叉排序树 ►二叉查找树的建立(插入): 说明: 二叉树的创建是二叉树反复插入节点所构造出来的! 若二叉树为空树,则插入元素作为树根节点. 若根结点的键值等于key,则插入失…
二叉查找树(BST):使用中序遍历可以得到一个有序的序列…
二叉查找树BST 就是二叉搜索树 二叉排序树. 就是满足 左儿子<父节点<右儿子 的一颗树,插入和查询复杂度最好情况都是logN的,写起来很简单.   根据BST的性质可以很好的解决这些东西 1.查询值 int Search(int k,int x) { if(x<a[k].key && a[k].l) Search(a[k].l,x); else if(x>a[k].key && a[k].r) Search(a[k].r,x); else ret…
二叉查找树基础 二叉查找树(BST)满足这样的性质,或是一颗空树:或左子树节点值小于根节点值.右子树节点值大于根节点值,左右子树也分别满足这个性质. 利用这个性质,可以迭代(iterative)或递归(recursive)地用O(lgN)的时间复杂度在二叉查找树中进行值查找. 相关LeetCode题: 700. Search in a Binary Search Tree  题解 701. Insert into a Binary Search Tree  题解 450. Delete Node…
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B…
当所有的静态查找结构添加和删除一个数据的时候,整个结构都需要重建.这对于常常需要在查找过程中动态改变数据而言,是灾难性的.因此人们就必须去寻找高效的动态查找结构,我们在这讨论一个非常常用的动态查找树——二叉查找树 . 二叉查找树的特点 下面的图就是两棵二叉查找树,我们可以总结一下他的特点: (1) 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 (2) 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值(3) 它的左.右子树也分别为二叉查找树 我们中序遍历这两棵树发现一个…
树是一种非线性的数据结构,以分层的方式存储数据.在二叉树上进行查找非常快,为二叉树添加或删除元素也非常快. 一棵树最上面的节点称为根节点,如果一个节点下面连接多个节点,那么该节点称为父节点,它下面的节点称为子节点.一个节点可以有 0 个.1 个或多个子节点,没有任何子节点的节点称为叶子节点. 二叉树是一种特殊的树,它的子节点个数不超过两个,一个父节点的两个子节点分别称为左节点和右节点.树中任何一层的节点可以都看做是子树的根,树的层数就是树的深度. 二叉查找树是一种特殊的二叉树,相对较小的值保存在…