r-cnn学习(八):minibatch】的更多相关文章

Python Tutorial 学习(八)--Errors and Exceptions恢复 Errors and Exceptions 错误与异常 此前,我们还没有开始着眼于错误信息.不过如果你是一路跟着例程走过来的,你就会发现一下错误信息.在Python里面至少有两类错误:语法错误和异常(syntax errors and exceptions) 8.1. Syntax Errors 语法错误 语法错误就是语法错误,语法错误就是语法错误. 比如说,关键词拼写错误,缩进错误,标点符号错误等等,…
CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过程中,随着网络深度的增加,后面每一层的输入值(即x=WU+B,U是输入)逐渐发生偏移和变动,之所以训练收敛慢,一般是整体分布往非线性函数的取值区间的上下限两端靠近,所以这将导致反向传播时低层网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因,而BN就是通过一定的规范手动,把每层神经网络任意神…
R基础学习 The Art of R Programming 1.seq 产生等差数列:seq(from,to,by) seq(from,to,length) for(i in 1:length(x)) 当x为null时 i会依次取 1,0 for(i in seq(x)) 能避免x为null时产生错误. seq(x) 会产生 1:length(x)的向量 2.rep rep(x,n) x整体重复n次 rep(x,each=m) x的每个元素依次重复m次 rep(x,y) x中每个元素按照对于的…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
目录 SVG 学习<一>基础图形及线段 SVG 学习<二>进阶 SVG世界,视野,视窗 stroke属性 svg分组 SVG 学习<三>渐变 SVG 学习<四> 基础API SVG 学习<五> SVG动画 SVG 学习<六> SVG的transform SVG 学习<七> SVG的路径——path(1)直线命令.弧线命令 SVG 学习<八> SVG的路径——path(2)贝塞尔曲线命令.光滑贝塞尔曲线命令 (转…
变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似,但是,不要因为R具有这些元素,就把R作为通用编程语言来看待,R的最小变量是向量,是一种面向数组(Array-Oriented)的语言.在编程时,尽量用array的方式思考,避免使用循环(for,while,repeat)控制,而使用apply函数家族实现计算的迭代,这是R语言的特色,把特定的函数应用…
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi∈{1,2,...,C},另h=(h1,h2,...,hC)⊤为网络的最终输出,即样本i的预测结果,其中C为分类任务类别数. 交叉熵损失函数 交叉熵损失函数又称为Softmax损失函数,是目前卷积神经网络中最常用的分类…
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐…
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样本的标记空间的作用. 一段来自知乎的通俗理解: 从卷积网络谈起,卷积网络在形式上有一点点像咱们正在召开的“人民代表大会”.卷积核的个数相当于候选人,图像中不同的特征会激活不同的“候选人”(卷积核).池化层(仅指最大池化)起着类似于“合票”的作用,不同特征在对不同的“候选人”有着各自的喜好. 全连接相…
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的.它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值.直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要.池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合.通常来说,CNN的卷积层之间都…